Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Galaxies on graph neural networks: towards robust synthetic galaxy catalogs with deep generative models (2212.05596v1)

Published 11 Dec 2022 in astro-ph.GA

Abstract: The future astronomical imaging surveys are set to provide precise constraints on cosmological parameters, such as dark energy. However, production of synthetic data for these surveys, to test and validate analysis methods, suffers from a very high computational cost. In particular, generating mock galaxy catalogs at sufficiently large volume and high resolution will soon become computationally unreachable. In this paper, we address this problem with a Deep Generative Model to create robust mock galaxy catalogs that may be used to test and develop the analysis pipelines of future weak lensing surveys. We build our model on a custom built Graph Convolutional Networks, by placing each galaxy on a graph node and then connecting the graphs within each gravitationally bound system. We train our model on a cosmological simulation with realistic galaxy populations to capture the 2D and 3D orientations of galaxies. The samples from the model exhibit comparable statistical properties to those in the simulations. To the best of our knowledge, this is the first instance of a generative model on graphs in an astrophysical/cosmological context.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.