Hamiltonian representation of isomonodromic deformations of general rational connections on $\mathfrak{gl}_2(\mathbb{C})$ (2212.04833v6)
Abstract: In this paper, we study and build the Hamiltonian system attached to any $\mathfrak{gl}_2(\mathbb{C})$ meromorphic connection with arbitrary number of non-ramified poles of arbitrary degrees. In particular, we propose the Lax pairs and Hamiltonian evolutions expressed in terms of irregular times and monodromies associated to the poles as well as $g$ Darboux coordinates defined as the apparent singularities arising in the oper gauge. Moreover, we also provide a reduction of the isomonodromic deformations to a subset of $g$ non-trivial isomonodromic deformations. This reduction is equivalent to a map reducing the set of irregular times to only $g$ non-trivial isomonodromic times. We apply our construction to all cases where the associated spectral curve has genus 1 and recover the standard Painlev\'{e} equations. We finally make the connection with the topological recursion and the quantization of classical spectral curve from this perspective.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.