Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integration of Pre-trained Protein Language Models into Geometric Deep Learning Networks (2212.03447v2)

Published 7 Dec 2022 in cs.LG, cs.CE, and q-bio.QM

Abstract: Geometric deep learning has recently achieved great success in non-Euclidean domains, and learning on 3D structures of large biomolecules is emerging as a distinct research area. However, its efficacy is largely constrained due to the limited quantity of structural data. Meanwhile, protein LLMs trained on substantial 1D sequences have shown burgeoning capabilities with scale in a broad range of applications. Several previous studies consider combining these different protein modalities to promote the representation power of geometric neural networks, but fail to present a comprehensive understanding of their benefits. In this work, we integrate the knowledge learned by well-trained protein LLMs into several state-of-the-art geometric networks and evaluate a variety of protein representation learning benchmarks, including protein-protein interface prediction, model quality assessment, protein-protein rigid-body docking, and binding affinity prediction. Our findings show an overall improvement of 20% over baselines. Strong evidence indicates that the incorporation of protein LLMs' knowledge enhances geometric networks' capacity by a significant margin and can be generalized to complex tasks.

Citations (26)

Summary

We haven't generated a summary for this paper yet.