Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Asymmetric Dependence Measurement and Testing (2211.16645v1)

Published 30 Nov 2022 in stat.ME

Abstract: Measuring the (causal) direction and strength of dependence between two variables (events), Xi and Xj , is fundamental for all science. Our survey of decades-long literature on statistical dependence reveals that most assume symmetry in the sense that the strength of dependence of Xi on Xj exactly equals the strength of dependence of Xj on Xi. However, we show that such symmetry is often untrue in many real-world examples, being neither necessary nor sufficient. Vinod's (2014) asymmetric matrix R* in [-1, 1] of generalized correlation coefficients provides intuitively appealing, readily interpretable, and superior measures of dependence. This paper proposes statistical inference for R* using Taraldsen's (2021) exact sampling distribution of correlation coefficients and the bootstrap. When the direction is known, proposed asymmetric (one-tail) tests have greater power.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)