Designing Neural Networks for Hyperbolic Conservation Laws (2211.14375v1)
Abstract: We propose a new data-driven method to learn the dynamics of an unknown hyperbolic system of conservation laws using deep neural networks. Inspired by classical methods in numerical conservation laws, we develop a new conservative form network (CFN) in which the network learns the flux function of the unknown system. Our numerical examples demonstrate that the CFN yields significantly better prediction accuracy than what is obtained using a standard non-conservative form network, even when it is enhanced with constraints to promote conservation. In particular, solutions obtained using the CFN consistently capture the correct shock propagation speed without introducing non-physical oscillations into the solution. They are furthermore robust to noisy and sparse observation environments.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.