Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lagrangian dual framework for conservative neural network solutions of kinetic equations (2106.12147v1)

Published 23 Jun 2021 in math.NA, cs.LG, and cs.NA

Abstract: In this paper, we propose a novel conservative formulation for solving kinetic equations via neural networks. More precisely, we formulate the learning problem as a constrained optimization problem with constraints that represent the physical conservation laws. The constraints are relaxed toward the residual loss function by the Lagrangian duality. By imposing physical conservation properties of the solution as constraints of the learning problem, we demonstrate far more accurate approximations of the solutions in terms of errors and the conservation laws, for the kinetic Fokker-Planck equation and the homogeneous Boltzmann equation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.