Papers
Topics
Authors
Recent
2000 character limit reached

Point Cloud Generation using Transformer Encoders and Normalising Flows (2211.13623v1)

Published 24 Nov 2022 in hep-ex

Abstract: Data generation based on Machine Learning has become a major research topic in particle physics. This is due to the current Monte Carlo simulation approach being computationally challenging for future colliders, which will have a significantly higher luminosity. The generation of collider data is similar to point cloud generation, but arguably more difficult as there are complex correlations between the points which need to be modelled correctly. A refinement model consisting of normalising flows and transformer encoders is presented. The normalising flow output is corrected by a transformer encoder, which is adversarially trained against another transformer encoder discriminator/critic. The model reaches state-of-the-art performance while yielding a stable training.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.