Papers
Topics
Authors
Recent
2000 character limit reached

MF2-MVQA: A Multi-stage Feature Fusion method for Medical Visual Question Answering (2211.05991v1)

Published 11 Nov 2022 in cs.CV and cs.AI

Abstract: There is a key problem in the medical visual question answering task that how to effectively realize the feature fusion of language and medical images with limited datasets. In order to better utilize multi-scale information of medical images, previous methods directly embed the multi-stage visual feature maps as tokens of same size respectively and fuse them with text representation. However, this will cause the confusion of visual features at different stages. To this end, we propose a simple but powerful multi-stage feature fusion method, MF2-MVQA, which stage-wise fuses multi-level visual features with textual semantics. MF2-MVQA achieves the State-Of-The-Art performance on VQA-Med 2019 and VQA-RAD dataset. The results of visualization also verify that our model outperforms previous work.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.