Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Algebra of the spinor invariants and the relativistic hydrogen atom (2211.01857v1)

Published 3 Nov 2022 in quant-ph and cond-mat.other

Abstract: It is shown that the Dirac equation with the Coulomb potential can be solved using the algebra of the three spinor invariants of the Dirac equation without the involvement of the methods of supersymmetric quantum mechanics. The Dirac Hamiltonian is invariant with respect to the rotation transformation, which indicates the dynamical (hidden) symmetry $ SU(2) $ of the Dirac equation. The total symmetry of the Dirac equation is the symmetry $ SO(3) \otimes SU(2) $. The generator of the $ SO(3) $ symmetry group is given by the total momentum operator, and the generator of $ SU(2) $ group is given by the rotation of the vector-states in the spinor space, determined by the Dirac, Johnson-Lippmann, and the new spinor invariants. It is shown that using algebraic approach to the Dirac problem allows one to calculate the eigenstates and eigenenergies of the relativistic hydrogen atom and reveals the fundamental role of the principal quantum number as an independent number, even though it is represented as the combination of other quantum numbers.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.