Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Quantum Kernel Learning Approach to Acoustic Modeling for Spoken Command Recognition (2211.01263v1)

Published 2 Nov 2022 in cs.SD, cs.LG, eess.AS, and quant-ph

Abstract: We propose a quantum kernel learning (QKL) framework to address the inherent data sparsity issues often encountered in training large-scare acoustic models in low-resource scenarios. We project acoustic features based on classical-to-quantum feature encoding. Different from existing quantum convolution techniques, we utilize QKL with features in the quantum space to design kernel-based classifiers. Experimental results on challenging spoken command recognition tasks for a few low-resource languages, such as Arabic, Georgian, Chuvash, and Lithuanian, show that the proposed QKL-based hybrid approach attains good improvements over existing classical and quantum solutions.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.