Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Complexity in Non-Convex Decentralized Learning over Time-Varying Networks

Published 1 Nov 2022 in cs.LG and math.OC | (2211.00533v1)

Abstract: Decentralized optimization with time-varying networks is an emerging paradigm in machine learning. It saves remarkable communication overhead in large-scale deep training and is more robust in wireless scenarios especially when nodes are moving. Federated learning can also be regarded as decentralized optimization with time-varying communication patterns alternating between global averaging and local updates. While numerous studies exist to clarify its theoretical limits and develop efficient algorithms, it remains unclear what the optimal complexity is for non-convex decentralized stochastic optimization over time-varying networks. The main difficulties lie in how to gauge the effectiveness when transmitting messages between two nodes via time-varying communications, and how to establish the lower bound when the network size is fixed (which is a prerequisite in stochastic optimization). This paper resolves these challenges and establish the first lower bound complexity. We also develop a new decentralized algorithm to nearly attain the lower bound, showing the tightness of the lower bound and the optimality of our algorithm.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.