Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lagrangian model for passive scalar gradients in turbulence (2210.17336v1)

Published 31 Oct 2022 in physics.flu-dyn

Abstract: The equation for the fluid velocity gradient along a Lagrangian trajectory immediately follows from the Navier-Stokes equation. However, such an equation involves two terms that cannot be determined from the velocity gradient along the chosen Lagrangian path: the pressure Hessian and the viscous Laplacian. A recent model handles these unclosed terms using a multi-level version of the recent deformation of Gaussian fields (RDGF) closure (Johnson & Meneveau, Phys.~Rev.~Fluids, 2017). This model is in remarkable agreement with DNS data and works for arbitrary Taylor Reynolds numbers $\Rey_\lambda$. Inspired by this, we develop a Lagrangian model for passive scalar gradients in isotropic turbulence. The equation for passive scalar gradients also involves an unclosed term in the Lagrangian frame, namely the scalar gradient diffusion term, which we model using the RDGF approach. However, comparisons of the statistics obtained from this model with direct numerical simulation (DNS) data reveal substantial errors due to erroneously large fluctuations generated by the model. We address this defect by incorporating into the closure approximation information regarding the scalar gradient production along the local trajectory history of the particle. This modified model makes predictions for the scalar gradients, their production rates, and alignments with the strain-rate eigenvectors that are in very good agreement with DNS data. However, while the model yields valid predictions up to around $\Rey_\lambda\approx 500$, beyond this, the model breaks down.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.