Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Recent Fluid Deformation closure for velocity gradient tensor dynamics in turbulence: time-scale effects and expansions (0812.3891v1)

Published 19 Dec 2008 in nlin.CD and physics.flu-dyn

Abstract: In order to model pressure and viscous terms in the equation for the Lagrangian dynamics of the velocity gradient tensor in turbulent flows, Chevillard & Meneveau (Phys. Rev. Lett. 97, 174501, 2006) introduced the Recent Fluid Deformation closure. Using matrix exponentials, the closure allows to overcome the unphysical finite-time blow-up of the well-known Restricted Euler model. However, it also requires the specification of a decorrelation time scale of the velocity gradient along the Lagrangian evolution, and when the latter is chosen too short (or, equivalently, the Reynolds number is too high), the model leads to unphysical statistics. In the present paper, we explore the limitations of this closure by means of numerical experiments and analytical considerations. We also study the possible effects of using time-correlated stochastic forcing instead of the previously employed white-noise forcing. Numerical experiments show that reducing the correlation time scale specified in the closure and in the forcing does not lead to a commensurate reduction of the autocorrelation time scale of the predicted evolution of the velocity gradient tensor. This observed inconsistency could explain the unrealistic predictions at increasing Reynolds numbers.We perform a series expansion of the matrix exponentials in powers of the decorrelation time scale, and we compare the full original model with a linearized version. The latter is not able to extend the limits of applicability of the former but allows the model to be cast in terms of a damping term whose sign gives additional information about the stability of the model as function of the second invariant of the velocity gradient tensor.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.