2000 character limit reached
Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery (2210.14671v1)
Published 26 Oct 2022 in math.OC, math.ST, and stat.TH
Abstract: We revisit the problem of recovering a low-rank positive semidefinite matrix from rank-one projections using tools from optimal transport. More specifically, we show that a variational formulation of this problem is equivalent to computing a Wasserstein barycenter. In turn, this new perspective enables the development of new geometric first-order methods with strong convergence guarantees in Bures-Wasserstein distance. Experiments on simulated data demonstrate the advantages of our new methodology over existing methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.