Papers
Topics
Authors
Recent
2000 character limit reached

Score-based Denoising Diffusion with Non-Isotropic Gaussian Noise Models (2210.12254v2)

Published 21 Oct 2022 in cs.LG and cs.CV

Abstract: Generative models based on denoising diffusion techniques have led to an unprecedented increase in the quality and diversity of imagery that is now possible to create with neural generative models. However, most contemporary state-of-the-art methods are derived from a standard isotropic Gaussian formulation. In this work we examine the situation where non-isotropic Gaussian distributions are used. We present the key mathematical derivations for creating denoising diffusion models using an underlying non-isotropic Gaussian noise model. We also provide initial experiments with the CIFAR-10 dataset to help verify empirically that this more general modeling approach can also yield high-quality samples.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.