Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Denoising Diffusion Gamma Models (2110.05948v1)

Published 10 Oct 2021 in eess.SP, cs.AI, cs.CV, cs.GR, cs.LG, cs.SD, eess.AS, and eess.IV

Abstract: Generative diffusion processes are an emerging and effective tool for image and speech generation. In the existing methods, the underlying noise distribution of the diffusion process is Gaussian noise. However, fitting distributions with more degrees of freedom could improve the performance of such generative models. In this work, we investigate other types of noise distribution for the diffusion process. Specifically, we introduce the Denoising Diffusion Gamma Model (DDGM) and show that noise from Gamma distribution provides improved results for image and speech generation. Our approach preserves the ability to efficiently sample state in the training diffusion process while using Gamma noise.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com