Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Global fit to $b \to cτν$ anomalies 2022 mid-autumn (2210.10751v4)

Published 19 Oct 2022 in hep-ph and hep-ex

Abstract: Recently, the LHCb collaboration announced a preliminary result of the test of lepton flavor universality (LFU) in $B\to D{(\ast)}$ semi-leptonic decays: $R_{D}{\rm LHCb2022} = 0.441 \pm 0.089$ and $R_{D{\ast}}{\rm LHCb2022} = 0.281 \pm 0.030$ based on the LHC Run 1 data. This is the first result of $R_{D}$ for the LHCb experiment, and its precision is comparable to the other $B$-factory data. Interestingly, those data prefer the violation of the LFU again. A new world average of the data from the BaBar, Belle, and LHCb collaborations is $R_{D} = 0.358 \pm 0.027$ and $R_{D{\ast}} = 0.285 \pm 0.013$. Including this new data, we update a circumstance of the $b \to c \tau \overline\nu$ measurements and their implications for new physics. Incorporating recent developments for the $B \to D{(\ast)}$ form factors in the Standard Model (SM), we observe a $4.1 \sigma$ deviation from the SM predictions. Our updates also include; model-independent new physics (NP) formulae for the related observables; and the global fittings of parameters for leptoquark scenarios as well as single NP operator scenarios. Furthermore, we show future potential to indirectly distinguish different new physics scenarios with the use of the precise measurements of the polarization observables in $B\to D{(\ast)}\tau \overline\nu$ at the Belle II and the high-$p_{\rm T}$ flavored-tail searches at the LHC. We also discuss an impact on the LFU violation in $\Upsilon \to l+ l-$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (198)
  1. BaBar Collaboration, “Evidence for an excess of B¯→D(*)⁢τ−⁢ν¯τ→¯𝐵superscript𝐷superscript𝜏subscript¯𝜈𝜏\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decays,” Phys.  Rev. Lett.  109 (2012) 101802 [arXiv:1205.5442].
  2. BaBar Collaboration, “Measurement of an Excess of B¯→D(*)⁢τ−⁢ν¯τ→¯𝐵superscript𝐷superscript𝜏subscript¯𝜈𝜏\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT Decays and Implications for Charged Higgs Bosons,” Phys.  Rev. D 88 (2013) 072012 [arXiv:1303.0571].
  3. LHCb Collaboration, “Measurement of the ratio of branching fractions ℬ⁢(B¯0→D*+⁢τ−⁢ν¯τ)/ℬ⁢(B¯0→D*+⁢μ−⁢ν¯μ)ℬ→superscript¯𝐵0superscript𝐷absentsuperscript𝜏subscript¯𝜈𝜏ℬ→superscript¯𝐵0superscript𝐷absentsuperscript𝜇subscript¯𝜈𝜇\mathcal{B}(\bar{B}^{0}\to D^{*+}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}% ^{0}\to D^{*+}\mu^{-}\bar{\nu}_{\mu})caligraphic_B ( over¯ start_ARG italic_B end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ) / caligraphic_B ( over¯ start_ARG italic_B end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ),” Phys.  Rev. Lett.  115 (2015) 111803 [arXiv:1506.08614]. [Erratum: Phys.Rev.Lett. 115, 159901 (2015)].
  4. LHCb Collaboration, “Measurement of the ratio of the B0→D*−⁢τ+⁢ντ→superscript𝐵0superscript𝐷absentsuperscript𝜏subscript𝜈𝜏B^{0}\to D^{*-}\tau^{+}\nu_{\tau}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * - end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT and B0→D*−⁢μ+⁢νμ→superscript𝐵0superscript𝐷absentsuperscript𝜇subscript𝜈𝜇B^{0}\to D^{*-}\mu^{+}\nu_{\mu}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * - end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT branching fractions using three-prong τ𝜏\tauitalic_τ-lepton decays,” Phys.  Rev. Lett.  120 (2018) 171802 [arXiv:1708.08856].
  5. LHCb Collaboration, “Test of Lepton Flavor Universality by the measurement of the B0→D*−⁢τ+⁢ντ→superscript𝐵0superscript𝐷absentsuperscript𝜏subscript𝜈𝜏B^{0}\to D^{*-}\tau^{+}\nu_{\tau}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * - end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT branching fraction using three-prong τ𝜏\tauitalic_τ decays,” Phys.  Rev.  D 97 (2018) 072013 [arXiv:1711.02505].
  6. LHCb Collaboration, “Measurement of the ratios of branching fractions ℛ⁢(D*)ℛsuperscript𝐷\mathcal{R}(D^{*})caligraphic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) and ℛ⁢(D0)ℛsuperscript𝐷0\mathcal{R}(D^{0})caligraphic_R ( italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ),” Phys.  Rev. Lett.  131 (2023) 111802 [arXiv:2302.02886].
  7. Belle Collaboration, “Measurement of the branching ratio of B¯→D(∗)⁢τ−⁢ν¯τ→¯𝐵superscript𝐷∗superscript𝜏subscript¯𝜈𝜏\bar{B}\to D^{(\ast)}\tau^{-}\bar{\nu}_{\tau}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT relative to B¯→D(∗)⁢ℓ−⁢ν¯ℓ→¯𝐵superscript𝐷∗superscriptℓsubscript¯𝜈ℓ\bar{B}\to D^{(\ast)}\ell^{-}\bar{\nu}_{\ell}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT decays with hadronic tagging at Belle,” Phys.  Rev.  D 92 (2015) 072014 [arXiv:1507.03233].
  8. Belle Collaboration, “Measurement of the τ𝜏\tauitalic_τ lepton polarization and R⁢(D*)𝑅superscript𝐷R(D^{*})italic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) in the decay B¯→D*⁢τ−⁢ν¯τ→¯𝐵superscript𝐷superscript𝜏subscript¯𝜈𝜏\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT,” Phys.  Rev. Lett.  118 (2017) 211801 [arXiv:1612.00529].
  9. Belle Collaboration, “Measurement of the τ𝜏\tauitalic_τ lepton polarization and R⁢(D*)𝑅superscript𝐷R(D^{*})italic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) in the decay B¯→D*⁢τ−⁢ν¯τ→¯𝐵superscript𝐷superscript𝜏subscript¯𝜈𝜏\bar{B}\rightarrow D^{*}\tau^{-}\bar{\nu}_{\tau}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT with one-prong hadronic τ𝜏\tauitalic_τ decays at Belle,” Phys.  Rev.  D 97 (2018) 012004 [arXiv:1709.00129].
  10. Belle Collaboration, “Measurement of ℛ⁢(D)ℛ𝐷\mathcal{R}(D)caligraphic_R ( italic_D ) and ℛ⁢(D∗)ℛsuperscript𝐷∗\mathcal{R}(D^{\ast})caligraphic_R ( italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) with a semileptonic tagging method.” arXiv:1904.08794.
  11. Belle Collaboration, “Measurement of ℛ⁢(D)ℛ𝐷\mathcal{R}(D)caligraphic_R ( italic_D ) and ℛ⁢(D*)ℛsuperscript𝐷\mathcal{R}(D^{*})caligraphic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) with a semileptonic tagging method,” Phys.  Rev. Lett.  124 (2020) 161803 [arXiv:1910.05864].
  12. Belle-II Collaboration, “First flavor tagging calibration using 2019 Belle II data.” arXiv:2008.02707.
  13. Belle-II Collaboration, “A test of lepton flavor universality with a measurement of R⁢(D*)𝑅superscript𝐷R(D^{*})italic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) using hadronic B𝐵Bitalic_B tagging at the Belle II experiment.” arXiv:2401.02840.
  14. HFLAV Collaboration. “Preliminary average of R⁢(D)𝑅𝐷R(D)italic_R ( italic_D ) and R⁢(D∗)𝑅superscript𝐷∗R(D^{\ast})italic_R ( italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) for Moriond 2024” at https://hflav-eos.web.cern.ch/hflav-eos/semi/moriond24/html/RDsDsstar/RDRDs.html.
  15. D. London and J. Matias, “B𝐵Bitalic_B Flavour Anomalies: 2021 Theoretical Status Report,” Ann. Rev.  Nucl.  Part.  Sci.  72 (2022) 37–68 [arXiv:2110.13270].
  16. B. Capdevila, A. Crivellin, and J. Matias, “Review of Semileptonic B𝐵Bitalic_B Anomalies,” Eur. Phys.  J.  ST 1 (2023) 20 [arXiv:2309.01311].
  17. LHCb Collaboration, “R⁢(D∗)𝑅superscript𝐷∗R(D^{\ast})italic_R ( italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) and R⁢(D)𝑅𝐷R(D)italic_R ( italic_D ) with τ−→μ−⁢ντ⁢ν¯μ→superscript𝜏superscript𝜇subscript𝜈𝜏subscript¯𝜈𝜇\tau^{-}\to\mu^{-}\nu_{\tau}\overline{\nu}_{\mu}italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT.”. https://indico.cern.ch/event/1187939/.
  18. LHCb Collaboration, “Measurement of R⁢(D∗)𝑅superscript𝐷∗R(D^{\ast})italic_R ( italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) with hadronic τ+superscript𝜏\tau^{+}italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT decays at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV by the LHCb collaboration.”. https://indico.cern.ch/event/1231797/.
  19. LHCb Collaboration, “Test of lepton flavor universality using B0→D∗−⁢τ+⁢ντ→superscript𝐵0superscript𝐷∗absentsuperscript𝜏subscript𝜈𝜏B^{0}\to D^{\ast-}\tau^{+}\nu_{\tau}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT ∗ - end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decays with hadronic τ𝜏\tauitalic_τ channels,” Phys. Rev.  D 108 (2023) 012018 [arXiv:2305.01463].
  20. LHCb Collaboration, “b→c⁢l⁢ν→𝑏𝑐𝑙𝜈b\to cl\nuitalic_b → italic_c italic_l italic_ν decays at LHCb.”. https://indico.in2p3.fr/event/32664/timetable/?view=standard_numbered#38-b-to-c-l-nu-decays-at-lhcb.
  21. Belle II Collaboration, “Recent Belle II results on semileptonic B decays and tests of lepton-flavor universality.”. https://indico.cern.ch/event/1114856/contributions/5423684/.
  22. Belle-II Collaboration, “Snowmass White Paper: Belle II physics reach and plans for the next decade and beyond.” arXiv:2207.06307.
  23. G. Landsberg, “B Physics Parking Program in CMS.” talk in 20th Annual RDMS CMS Collaboration Conference, 2018. https://indico.cern.ch/event/754760/contributions/3127694/.
  24. CMS Collaboration, “Recording and reconstructing 10 billion unbiased b hadron decays in CMS,” 2019. https://cds.cern.ch/record/2704495.
  25. R. Bainbridge, “Recording and reconstructing 10 billion unbiased b hadron decays in CMS,” EPJ Web Conf.  245 (2020) 01025.
  26. Y. Takahashi, “Indications of new physics beyond the Standard Model in flavor anomalies observed at the LHC experiments.” talk in The Physical Society of Japan 2020 Autumn meeting, 2020.
  27. Heavy Flavor Averaging Group, HFLAV Collaboration, “Averages of b-hadron, c-hadron, and τ𝜏\tauitalic_τ-lepton properties as of 2021,” Phys.  Rev.  D 107 (2023) 052008 [arXiv:2206.07501]. Average of RDsubscript𝑅𝐷R_{D}italic_R start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT and RD∗subscript𝑅superscript𝐷∗R_{D^{\ast}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT for Spring 2021 at https://hflav-eos.web.cern.ch/hflav-eos/semi/spring21/html/RDsDsstar/RDRDs.html.
  28. F. U. Bernlochner, M. F. Sevilla, D. J. Robinson, and G. Wormser, “Semitauonic b-hadron decays: A lepton flavor universality laboratory,” Rev.  Mod.  Phys. 94 (2022) 015003 [arXiv:2101.08326].
  29. S. Iguro and R. Watanabe, “Bayesian fit analysis to full distribution data of B¯→D(∗)⁢ℓ⁢ν¯:|Vcb|:→¯BsuperscriptD∗ℓ¯𝜈subscriptVcb\overline{\mathrm{B}}\to{\mathrm{D}}^{\left(\ast\right)}\mathrm{\ell}\overline% {\nu}:\left|{\mathrm{V}}_{\mathrm{cb}}\right|over¯ start_ARG roman_B end_ARG → roman_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT roman_ℓ over¯ start_ARG italic_ν end_ARG : | roman_V start_POSTSUBSCRIPT roman_cb end_POSTSUBSCRIPT | determination and new physics constraints,” JHEP 08 (2020) 006 [arXiv:2004.10208].
  30. M. Bordone, M. Jung, and D. van Dyk, “Theory determination of B¯→D(*)⁢ℓ−⁢ν¯→¯𝐵superscript𝐷superscriptℓ¯𝜈\bar{B}\to D^{(*)}\ell^{-}\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG form factors at 𝒪⁢(1/mc2)𝒪1superscriptsubscript𝑚𝑐2\mathcal{O}(1/m_{c}^{2})caligraphic_O ( 1 / italic_m start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ),” Eur.  Phys.  J. C 80 (2020) 74 [arXiv:1908.09398].
  31. M. Bordone, N. Gubernari, D. van Dyk, and M. Jung, “Heavy-Quark expansion for B¯s→Ds(*)→subscript¯𝐵𝑠subscriptsuperscript𝐷𝑠{{\bar{B}}_{s}\rightarrow D^{(*)}_{s}}over¯ start_ARG italic_B end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT form factors and unitarity bounds beyond the S⁢U⁢(3)F𝑆𝑈subscript3𝐹{SU(3)_{F}}italic_S italic_U ( 3 ) start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT limit,” Eur.  Phys.  J. C 80 (2020) 347 [arXiv:1912.09335].
  32. LATTICE-HPQCD Collaboration, “R⁢(J/ψ)𝑅𝐽𝜓R(J/\psi)italic_R ( italic_J / italic_ψ ) and Bc−→J/ψ⁢ℓ−⁢ν¯ℓ→superscriptsubscript𝐵𝑐𝐽𝜓superscriptℓsubscript¯𝜈ℓB_{c}^{-}\rightarrow J/\psi\ell^{-}\bar{\nu}_{\ell}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_J / italic_ψ roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT Lepton Flavor Universality Violating Observables from Lattice QCD,” Phys.  Rev. Lett.  125 (2020) 222003 [arXiv:2007.06956].
  33. F. U. Bernlochner, Z. Ligeti, D. J. Robinson, and W. L. Sutcliffe, “New predictions for Λb→Λc→subscriptΛ𝑏subscriptΛ𝑐\Lambda_{b}\to\Lambda_{c}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT semileptonic decays and tests of heavy quark symmetry,” Phys.  Rev. Lett.  121 (2018) 202001 [arXiv:1808.09464].
  34. D. Aloni, A. Efrati, Y. Grossman, and Y. Nir, “ΥΥ\Upsilonroman_Υ and ψ𝜓\psiitalic_ψ leptonic decays as probes of solutions to the RD(*)superscriptsubscript𝑅𝐷R_{D}^{(*)}italic_R start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT puzzle,” JHEP 06 (2017) 019 [arXiv:1702.07356].
  35. S. de Boer, T. Kitahara, and I. Nisandzic, “Soft-Photon Corrections to B¯→D⁢τ−⁢ν¯τ→¯𝐵𝐷superscript𝜏subscript¯𝜈𝜏\bar{B}\to D\tau^{-}\bar{\nu}_{\tau}over¯ start_ARG italic_B end_ARG → italic_D italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT Relative to B¯→D⁢μ−⁢ν¯μ→¯𝐵𝐷superscript𝜇subscript¯𝜈𝜇\bar{B}\to D\mu^{-}\bar{\nu}_{\mu}over¯ start_ARG italic_B end_ARG → italic_D italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT,” Phys.  Rev. Lett.  120 (2018) 261804 [arXiv:1803.05881].
  36. S. Calí, S. Klaver, M. Rotondo, and B. Sciascia, “Impacts of radiative corrections on measurements of lepton flavour universality in B→D⁢ℓ⁢νℓ→𝐵𝐷ℓsubscript𝜈ℓB\to D\ell\nu_{\ell}italic_B → italic_D roman_ℓ italic_ν start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT decays,” Eur.  Phys.  J. C 79 (2019) 744 [arXiv:1905.02702].
  37. G. Isidori and O. Sumensari, “Optimized lepton universality tests in B→V⁢ℓ⁢ν¯→𝐵𝑉ℓ¯𝜈B\rightarrow V\ell{\bar{\nu}}italic_B → italic_V roman_ℓ over¯ start_ARG italic_ν end_ARG decays,” Eur.  Phys.  J. C 80 (2020) 1078 [arXiv:2007.08481].
  38. M. Papucci, T. Trickle, and M. B. Wise, “Radiative semileptonic B¯¯𝐵\overline{B}over¯ start_ARG italic_B end_ARG decays,” JHEP 02 (2022) 043 [arXiv:2110.13154].
  39. M. Tanaka and R. Watanabe, “Tau longitudinal polarization in B→D⁢τ⁢ν→𝐵𝐷𝜏𝜈B\to D\tau\nuitalic_B → italic_D italic_τ italic_ν and its role in the search for charged Higgs boson,” Phys.  Rev.  D 82 (2010) 034027 [arXiv:1005.4306].
  40. Y. Sakaki and H. Tanaka, “Constraints on the charged scalar effects using the forward-backward asymmetry on B¯→D(*)τ𝜏\tauitalic_τν𝜈\nuitalic_ν¯τ𝜏\tauitalic_τ,” Phys.  Rev.  D 87 (2013) 054002 [arXiv:1205.4908].
  41. M. Duraisamy and A. Datta, “The Full B→D*⁢τ−⁢ντ¯→𝐵superscript𝐷superscript𝜏¯subscript𝜈𝜏B\to D^{*}\tau^{-}\bar{\nu_{\tau}}italic_B → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_ARG Angular Distribution and CP violating Triple Products,” JHEP 09 (2013) 059 [arXiv:1302.7031].
  42. M. Duraisamy, P. Sharma, and A. Datta, “Azimuthal B→D*⁢τ−⁢ντ¯→𝐵superscript𝐷superscript𝜏¯subscript𝜈𝜏B\to D^{*}\tau^{-}\bar{\nu_{\tau}}italic_B → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_ARG angular distribution with tensor operators,” Phys.  Rev.  D 90 (2014) 074013 [arXiv:1405.3719].
  43. D. Becirevic, S. Fajfer, I. Nisandzic, and A. Tayduganov, “Angular distributions of B¯→D(∗)⁢ℓ⁢ν¯ℓ→¯𝐵superscript𝐷∗ℓsubscript¯𝜈ℓ\bar{B}\to D^{(\ast)}\ell\bar{\nu}_{\ell}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT roman_ℓ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT decays and search of New Physics,” Nucl.  Phys.  B 946 (2019) 114707 [arXiv:1602.03030].
  44. A. K. Alok, D. Kumar, S. Kumbhakar, and S. U. Sankar, “D*superscript𝐷D^{*}italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT polarization as a probe to discriminate new physics in B¯→D*⁢τ⁢ν¯→¯𝐵superscript𝐷𝜏¯𝜈\bar{B}\to D^{*}\tau\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG,” Phys. Rev.  D 95 (2017) 115038 [arXiv:1606.03164].
  45. M. A. Ivanov, J. G. Körner, and C.-T. Tran, “Probing new physics in B¯0→D(∗)⁢τ−⁢ν¯τ→superscript¯𝐵0superscript𝐷∗superscript𝜏subscript¯𝜈𝜏\bar{B}^{0}\to D^{(\ast)}\tau^{-}\bar{\nu}_{\tau}over¯ start_ARG italic_B end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT using the longitudinal, transverse, and normal polarization components of the tau lepton,” Phys.  Rev.  D 95 (2017) 036021 [arXiv:1701.02937].
  46. P. Colangelo and F. De Fazio, “Scrutinizing B¯→D∗⁢(D⁢π)⁢ℓ−⁢ν¯ℓ→¯𝐵superscript𝐷∗𝐷𝜋superscriptℓsubscript¯𝜈ℓ\overline{B}\to{D}^{\ast}\left(D\pi\right){\ell}^{-}{\overline{\nu}}_{\ell}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_D italic_π ) roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT and B¯→D∗⁢(D⁢γ)⁢ℓ−⁢ν¯ℓ→¯𝐵superscript𝐷∗𝐷𝛾superscriptℓsubscript¯𝜈ℓ\overline{B}\to{D}^{\ast}\left(D\gamma\right){\ell}^{-}{\overline{\nu}}_{\ell}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_D italic_γ ) roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT in search of new physics footprints,” JHEP 06 (2018) 082 [arXiv:1801.10468].
  47. S. Bhattacharya, S. Nandi, and S. Kumar Patra, “b→c⁢τ⁢ντ→𝑏𝑐𝜏subscript𝜈𝜏b\rightarrow c\tau\nu_{\tau}italic_b → italic_c italic_τ italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT Decays: a catalogue to compare, constrain, and correlate new physics effects,” Eur.  Phys.  J. C 79 (2019) 268 [arXiv:1805.08222].
  48. S. Iguro, T. Kitahara, Y. Omura, R. Watanabe, and K. Yamamoto, “D*superscript𝐷D^{*}italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT polarization vs. RD(∗)subscript𝑅superscript𝐷∗{R}_{D^{\left(\ast\right)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomalies in the leptoquark models,” JHEP 02 (2019) 194 [arXiv:1811.08899].
  49. D. Bečirević, M. Fedele, I. Nišandžić, and A. Tayduganov, “Lepton Flavor Universality tests through angular observables of B¯→D(∗)⁢ℓ⁢ν¯→¯𝐵superscript𝐷∗ℓ¯𝜈\overline{B}\to D^{(\ast)}\ell\overline{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT roman_ℓ over¯ start_ARG italic_ν end_ARG decay modes.” arXiv:1907.02257.
  50. D. Hill, M. John, W. Ke, and A. Poluektov, “Model-independent method for measuring the angular coefficients of B0→D*−⁢τ+⁢ντ→superscript𝐵0superscript𝐷absentsuperscript𝜏subscript𝜈𝜏B^{0}\to D^{*-}\tau^{+}\nu_{\tau}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * - end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decays,” JHEP 11 (2019) 133 [arXiv:1908.04643].
  51. M. Algueró, S. Descotes-Genon, J. Matias, and M. Novoa-Brunet, “Symmetries in B→D*⁢ℓ⁢ν→𝐵superscript𝐷ℓ𝜈B\to D^{*}\ell\nuitalic_B → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT roman_ℓ italic_ν angular observables,” JHEP 06 (2020) 156 [arXiv:2003.02533].
  52. B. Bhattacharya, A. Datta, S. Kamali, and D. London, “A measurable angular distribution for B¯→D∗⁢τ−⁢v¯τ→¯𝐵superscript𝐷∗superscript𝜏subscript¯𝑣𝜏\overline{B}\to{D}^{\ast}{\tau}^{-}{\overline{v}}_{\tau}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decays,” JHEP 07 (2020) 194 [arXiv:2005.03032].
  53. N. Penalva, E. Hernández, and J. Nieves, “New physics and the tau polarization vector in b → c⁢τ⁢ν¯τc𝜏subscript¯𝜈𝜏\mathrm{c}\tau{\overline{\nu}}_{\tau}roman_c italic_τ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decays,” JHEP 06 (2021) 118 [arXiv:2103.01857].
  54. N. Penalva, E. Hernández, and J. Nieves, “Visible energy and angular distributions of the charged particle from the τ𝜏\tauitalic_τ −--decay in b→c⁢τ⁢(μ⁢ν¯μ⁢ντ,π⁢ντ,ρ⁢ντ)⁢ν¯τ→𝑏𝑐𝜏𝜇subscript¯𝜈𝜇subscript𝜈𝜏𝜋subscript𝜈𝜏𝜌subscript𝜈𝜏subscript¯𝜈𝜏b\to c\tau\left(\mu{\overline{\nu}}_{\mu}{\nu}_{\tau},{\pi\nu}_{\tau},{\rho\nu% }_{\tau}\right){\overline{\nu}}_{\tau}italic_b → italic_c italic_τ ( italic_μ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT , italic_π italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT , italic_ρ italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ) over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT reactions,” JHEP 04 (2022) 026 [arXiv:2201.05537].
  55. M. Tanaka and R. Watanabe, “New physics in the weak interaction of B¯→D(*)⁢τ⁢ν¯→¯𝐵superscript𝐷𝜏¯𝜈\bar{B}\to D^{(*)}\tau\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG,” Phys.  Rev.  D 87 (2013) 034028 [arXiv:1212.1878].
  56. P. Asadi, M. R. Buckley, and D. Shih, “Asymmetry Observables and the Origin of RD(*)subscript𝑅superscript𝐷R_{D^{(*)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT Anomalies,” Phys.  Rev.  D 99 (2019) 035015 [arXiv:1810.06597].
  57. Belle Collaboration, “Measurement of the D∗−superscript𝐷∗absentD^{\ast-}italic_D start_POSTSUPERSCRIPT ∗ - end_POSTSUPERSCRIPT polarization in the decay B0→D∗−⁢τ+⁢ντ→superscript𝐵0superscript𝐷∗absentsuperscript𝜏subscript𝜈𝜏B^{0}\to D^{\ast-}\tau^{+}\nu_{\tau}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT ∗ - end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT.” arXiv:1903.03102.
  58. LHCb Collaboration, “LHCb measurements on semileptonic decays of b𝑏bitalic_b-hadrons.”. https://cds.cern.ch/record/2868260.
  59. LHCb Collaboration, “Measurement of the D*superscript𝐷D^{*}italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT longitudinal polarization in B0→D*−⁢τ+⁢ντ→superscript𝐵0superscript𝐷absentsuperscript𝜏subscript𝜈𝜏B^{0}\to D^{*-}\tau^{+}\nu_{\tau}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * - end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decays.” arXiv:2311.05224.
  60. Belle Collaboration, “Measurement of differential distributions of B→D∗⁢ℓ⁢ν¯ℓ→𝐵superscript𝐷∗ℓsubscript¯𝜈ℓB\to D^{\ast}\ell\overline{\nu}_{\ell}italic_B → italic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT roman_ℓ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT and implications on |Vc⁢b|subscript𝑉𝑐𝑏|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT |,” Phys.  Rev.  D 108 (2023) 012002 [arXiv:2301.07529].
  61. Belle-II Collaboration, “Determination of |Vc⁢b|subscript𝑉𝑐𝑏|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT | using B¯0→D*+⁢ℓ−⁢ν¯ℓ→superscript¯𝐵0superscript𝐷absentsuperscriptℓsubscript¯𝜈ℓ\bar{B}^{0}\to D^{*+}\ell^{-}\bar{\nu}_{\ell}over¯ start_ARG italic_B end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D start_POSTSUPERSCRIPT * + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT decays with Belle II,” Phys.  Rev.  D 108 (2023) 092013 [arXiv:2310.01170].
  62. Belle II Collaboration, “Recent Belle II results on semitauonic decays and tests of lepton-flavor universality.”. https://indico.desy.de/event/34916/contributions/146854.
  63. Belle-II Collaboration, “First measurement of R⁢(Xτ/ℓ)𝑅subscript𝑋𝜏ℓR(X_{\tau/\ell})italic_R ( italic_X start_POSTSUBSCRIPT italic_τ / roman_ℓ end_POSTSUBSCRIPT ) as an inclusive test of the b→c⁢τ⁢ν→𝑏𝑐𝜏𝜈b\to c\tau\nuitalic_b → italic_c italic_τ italic_ν anomaly.” arXiv:2311.07248.
  64. M. Freytsis, Z. Ligeti, and J. T. Ruderman, “Flavor models for B¯→D(*)⁢τ⁢ν¯→¯𝐵superscript𝐷𝜏¯𝜈\bar{B}\to D^{(*)}\tau\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG,” Phys.  Rev.  D 92 (2015) 054018 [arXiv:1506.08896].
  65. Z. Ligeti, M. Luke, and F. J. Tackmann, “Theoretical predictions for inclusive B→Xuτ𝜏\tauitalic_τν𝜈\nuitalic_ν¯ decay,” Phys.  Rev. D 105 (2022) 073009 [arXiv:2112.07685].
  66. M. Rahimi and K. K. Vos, “Standard Model predictions for lepton flavour universality ratios of inclusive semileptonic B decays,” JHEP 11 (2022) 007 [arXiv:2207.03432].
  67. ALEPH Collaboration, “Measurements of BR(b→τ−⁢ν¯τ⁢X)→𝑏superscript𝜏subscript¯𝜈𝜏𝑋(b\to\tau^{-}\bar{\nu}_{\tau}X)( italic_b → italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT italic_X ) and BR(b→τ−⁢ν¯τ⁢D∗±⁢X)→𝑏superscript𝜏subscript¯𝜈𝜏superscript𝐷∗absentplus-or-minus𝑋(b\to\tau^{-}\bar{\nu}_{\tau}D^{\ast\pm}X)( italic_b → italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ∗ ± end_POSTSUPERSCRIPT italic_X ) and upper limits on BR(B−→τ−⁢ν¯τ)→superscript𝐵superscript𝜏subscript¯𝜈𝜏(B^{-}\to\tau^{-}\bar{\nu}_{\tau})( italic_B start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ) and BR(b→s⁢ν⁢ν¯)→𝑏𝑠𝜈¯𝜈(b\to s\nu\bar{\nu})( italic_b → italic_s italic_ν over¯ start_ARG italic_ν end_ARG ),” Eur.  Phys. J.  C 19 (2001) 213–227 [hep-ex/0010022].
  68. A. Celis, M. Jung, X.-Q. Li, and A. Pich, “Scalar contributions to b→c⁢(u)⁢τ⁢ν→𝑏𝑐𝑢𝜏𝜈b\to c(u)\tau\nuitalic_b → italic_c ( italic_u ) italic_τ italic_ν transitions,” Phys.  Lett.  B 771 (2017) 168–179 [arXiv:1612.07757].
  69. S. Kamali, “New physics in inclusive semileptonic B𝐵Bitalic_B decays including nonperturbative corrections,” Int.  J.  Mod.  Phys. A 34 (2019) 1950036 [arXiv:1811.07393].
  70. M. Jung and D. M. Straub, “Constraining new physics in b→c⁢ℓ⁢ν→𝑏𝑐ℓ𝜈b\to c\ell\nuitalic_b → italic_c roman_ℓ italic_ν transitions,” JHEP 01 (2019) 009 [arXiv:1801.01112].
  71. Fermilab Lattice, MILC, Fermilab Lattice, MILC Collaboration, “Semileptonic form factors for B→D*⁢ℓ⁢ν→𝐵superscript𝐷ℓ𝜈B\rightarrow D^{*}\ell\nuitalic_B → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT roman_ℓ italic_ν at nonzero recoil from 2+1212+12 + 1-flavor lattice QCD: Fermilab Lattice and MILC Collaborations,” Eur.  Phys.  J. C 82 (2022) 1141 [arXiv:2105.14019]. [Erratum: Eur.Phys.J.C 83, 21 (2023)].
  72. JLQCD Collaboration, “B→D*⁢ℓ⁢νℓ→𝐵superscript𝐷ℓsubscript𝜈ℓB\to D^{*}\ell\nu_{\ell}italic_B → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT roman_ℓ italic_ν start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT semileptonic form factors from lattice QCD with Möbius domain-wall quarks.” arXiv:2306.05657.
  73. J. Harrison and C. T. H. Davies, “B→D*→𝐵superscript𝐷B\rightarrow D^{*}italic_B → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT vector, axial-vector and tensor form factors for the full q2superscript𝑞2q^{2}italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT range from lattice QCD.” arXiv:2304.03137.
  74. G. Martinelli, S. Simula, and L. Vittorio, “Updates on the determination of |Vc⁢b|subscript𝑉𝑐𝑏|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT |, R⁢(D*)𝑅superscript𝐷R(D^{*})italic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) and |Vu⁢b|/|Vc⁢b|subscript𝑉𝑢𝑏subscript𝑉𝑐𝑏|V_{ub}|/|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_u italic_b end_POSTSUBSCRIPT | / | italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT |.” arXiv:2310.03680.
  75. T. Kapoor, Z.-R. Huang, and E. Kou, “New physics search via angular distribution of B→D*⁢ℓ⁢νℓ→𝐵superscript𝐷ℓsubscript𝜈ℓB\rightarrow D^{*}\ell{\nu}_{\ell}italic_B → italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT roman_ℓ italic_ν start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT decay in the light of the new lattice data.” arXiv:2401.11636.
  76. G. Martinelli, S. Simula, and L. Vittorio, “Constraints for the semileptonic B→D⁢(*)→𝐵𝐷B\to D(*)italic_B → italic_D ( * ) form factors from lattice QCD simulations of two-point correlation functions,” Phys.  Rev.  D 104 (2021) 094512 [arXiv:2105.07851].
  77. G. Martinelli, S. Simula, and L. Vittorio, “|Vc⁢b|subscript𝑉𝑐𝑏|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT | and R⁢(D)(*)𝑅superscript𝐷R(D)^{(*)}italic_R ( italic_D ) start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT) using lattice QCD and unitarity,” Phys.  Rev.  D 105 (2022) 034503 [arXiv:2105.08674].
  78. G. Martinelli, S. Simula, and L. Vittorio, “Exclusive determinations of |Vc⁢b|subscript𝑉𝑐𝑏|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT | and R⁢(D*)𝑅superscript𝐷R(D^{*})italic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) through unitarity,” Eur.  Phys.  J. C 82 (2022) 1083 [arXiv:2109.15248].
  79. A. Greljo, J. Martin Camalich, and J. D. Ruiz-Álvarez, “Mono-τ𝜏\tauitalic_τ Signatures at the LHC Constrain Explanations of B𝐵Bitalic_B-decay Anomalies,” Phys.  Rev. Lett.  122 (2019) 131803 [arXiv:1811.07920].
  80. B. Dumont, K. Nishiwaki, and R. Watanabe, “LHC constraints and prospects for S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT scalar leptoquark explaining the B¯→D(*)⁢τ⁢ν¯→¯𝐵superscript𝐷𝜏¯𝜈\bar{B}\to D^{(*)}\tau\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG anomaly,” Phys. Rev.  D 94 (2016) 034001 [arXiv:1603.05248].
  81. W. Altmannshofer, P. S. Bhupal Dev, and A. Soni, “RD(*)subscript𝑅superscript𝐷R_{D^{(*)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomaly: A possible hint for natural supersymmetry with R𝑅Ritalic_R-parity violation,” Phys.  Rev.  D 96 (2017) 095010 [arXiv:1704.06659].
  82. S. Iguro and K. Tobe, “R⁢(D(*))𝑅superscript𝐷R(D^{(*)})italic_R ( italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT ) in a general two Higgs doublet model,” Nucl.  Phys.  B 925 (2017) 560–606 [arXiv:1708.06176].
  83. M. Abdullah, J. Calle, B. Dutta, A. Flórez, and D. Restrepo, “Probing a simplified, W′superscript𝑊′W^{\prime}italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT model of R⁢(D(∗))𝑅superscript𝐷∗R(D^{(\ast)})italic_R ( italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT ) anomalies using b𝑏bitalic_b-tags, τ𝜏\tauitalic_τ leptons and missing energy,” Phys.  Rev.  D 98 (2018) 055016 [arXiv:1805.01869].
  84. S. Iguro, Y. Omura, and M. Takeuchi, “Test of the R⁢(D(*))𝑅superscript𝐷R(D^{(*)})italic_R ( italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT ) anomaly at the LHC,” Phys.  Rev.  D 99 (2019) 075013 [arXiv:1810.05843].
  85. M. J. Baker, J. Fuentes-Martín, G. Isidori, and M. König, “High- pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT signatures in vector–leptoquark models,” Eur.  Phys.  J. C 79 (2019) 334 [arXiv:1901.10480].
  86. D. Marzocca, U. Min, and M. Son, “Bottom-Flavored Mono-Tau Tails at the LHC,” JHEP 12 (2020) 035 [arXiv:2008.07541].
  87. S. Iguro, M. Takeuchi, and R. Watanabe, “Testing Leptoquark/EFT in B¯→D(*)⁢l⁢ν¯→¯𝐵superscript𝐷𝑙¯𝜈\bar{B}\to D^{(*)}l\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_l over¯ start_ARG italic_ν end_ARG at the LHC,” Eur.  Phys.  J. C 81 (2021) 406 [arXiv:2011.02486].
  88. M. Endo, S. Iguro, T. Kitahara, M. Takeuchi, and R. Watanabe, “Non-resonant new physics search at the LHC for the b→c⁢τ⁢ν→𝑏𝑐𝜏𝜈b\to c\tau\nuitalic_b → italic_c italic_τ italic_ν anomalies,” JHEP 02 (2022) 106 [arXiv:2111.04748].
  89. F. Jaffredo, “Revisiting mono-tau tails at the LHC,” Eur.  Phys.  J. C 82 (2022) 541 [arXiv:2112.14604].
  90. ATLAS Collaboration, “Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” Phys.  Rev. Lett.  125 (2020) 051801 [arXiv:2002.12223].
  91. CMS Collaboration, “Searches for additional Higgs bosons and for vector leptoquarks in τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τ final states in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2023) 073 [arXiv:2208.02717].
  92. LHCb Collaboration, “Measurement of the ratio of branching fractions ℬ⁢(Bc+→J/ψ⁢τ+⁢ντ)ℬ→superscriptsubscript𝐵𝑐𝐽𝜓superscript𝜏subscript𝜈𝜏\mathcal{B}(B_{c}^{+}\,\to\,J/\psi\tau^{+}\nu_{\tau})caligraphic_B ( italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_J / italic_ψ italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT )/ℬ⁢(Bc+→J/ψ⁢μ+⁢νμ)ℬ→superscriptsubscript𝐵𝑐𝐽𝜓superscript𝜇subscript𝜈𝜇\mathcal{B}(B_{c}^{+}\,\to\,J/\psi\mu^{+}\nu_{\mu})caligraphic_B ( italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_J / italic_ψ italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ),” Phys.  Rev. Lett.  120 (2018) 121801 [arXiv:1711.05623].
  93. CMS Collaboration, “Recent CMS results on flavor anomalies and lepton flavor violation.”. https://indico.desy.de/event/34916/contributions/146862/.
  94. BaBar Collaboration, “Precision measurement of the ℬ⁢(Υ⁢(3⁢S)→τ+⁢τ−)/ℬ⁢(Υ⁢(3⁢S)→μ+⁢μ−)ℬ→Υ3𝑆superscript𝜏superscript𝜏ℬ→Υ3𝑆superscript𝜇superscript𝜇{\cal B}(\Upsilon(3S)\to\tau^{+}\tau^{-})/{\cal B}(\Upsilon(3S)\to\mu^{+}\mu^{% -})caligraphic_B ( roman_Υ ( 3 italic_S ) → italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) / caligraphic_B ( roman_Υ ( 3 italic_S ) → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) ratio,” Phys. Rev.  Lett.  125 (2020) 241801 [arXiv:2005.01230].
  95. Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe, “Testing leptoquark models in B¯→D(*)⁢τ⁢ν¯→¯𝐵superscript𝐷𝜏¯𝜈\bar{B}\to D^{(*)}\tau\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG,” Phys.  Rev.  D 88 (2013) 094012 [arXiv:1309.0301].
  96. Z.-R. Huang, Y. Li, C.-D. Lu, M. A. Paracha, and C. Wang, “Footprints of New Physics in b→c⁢τ⁢ν→𝑏𝑐𝜏𝜈b\to c\tau\nuitalic_b → italic_c italic_τ italic_ν Transitions,” Phys.  Rev.  D 98 (2018) 095018 [arXiv:1808.03565].
  97. E. Kou and P. Urquijo, eds., “The Belle II Physics Book,” PTEP 2019 (2019) 123C01 [arXiv:1808.10567]. [Erratum: PTEP 2020, 029201 (2020)].
  98. S. Iguro and Y. Omura, “Status of the semileptonic B𝐵Bitalic_B decays and muon g-2 in general 2HDMs with right-handed neutrinos,” JHEP 05 (2018) 173 [arXiv:1802.01732].
  99. P. Asadi, M. R. Buckley, and D. Shih, “It’s all right(-handed neutrinos): a new W′superscript𝑊′W^{\prime}italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT model for the RD(∗)subscript𝑅superscript𝐷∗{R}_{D^{{\left(\ast\right)}}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomaly,” JHEP 09 (2018) 010 [arXiv:1804.04135].
  100. A. Greljo, D. J. Robinson, B. Shakya, and J. Zupan, “R⁢(D(∗))𝑅superscript𝐷∗R(D^{(\ast)})italic_R ( italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT ) from W′superscript𝑊′W^{\prime}italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and right-handed neutrinos,” JHEP 09 (2018) 169 [arXiv:1804.04642].
  101. D. J. Robinson, B. Shakya, and J. Zupan, “Right-handed neutrinos and R(D(∗)∗{}^{(\ast)}start_FLOATSUPERSCRIPT ( ∗ ) end_FLOATSUPERSCRIPT),” JHEP 02 (2019) 119 [arXiv:1807.04753].
  102. K. S. Babu, B. Dutta, and R. N. Mohapatra, “A theory of R⁢(D*,D)𝑅superscript𝐷𝐷R(D^{*},D)italic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , italic_D ) anomaly with right-handed currents,” JHEP 01 (2019) 168 [arXiv:1811.04496].
  103. R. Mandal, C. Murgui, A. Peñuelas, and A. Pich, “The role of right-handed neutrinos in b→c⁢τ⁢ν¯→𝑏𝑐𝜏¯𝜈b\to c\tau\bar{\nu}italic_b → italic_c italic_τ over¯ start_ARG italic_ν end_ARG anomalies,” JHEP 08 (2020) 022 [arXiv:2004.06726].
  104. N. Penalva, E. Hernández, and J. Nieves, “The role of right-handed neutrinos in b→cτ⁢(π⁢ντ,ρ⁢ντ,μ⁢ν¯μ⁢ντ)⁢ν¯τ→𝑏subscript𝑐𝜏𝜋subscript𝜈𝜏𝜌subscript𝜈𝜏𝜇subscript¯𝜈𝜇subscript𝜈𝜏subscript¯𝜈𝜏b\to c_{\tau}(\pi\nu_{\tau},\rho\nu_{\tau},\mu\overline{\nu}_{\mu}\nu_{\tau})% \overline{\nu}_{\tau}italic_b → italic_c start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_π italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT , italic_ρ italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT , italic_μ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ) over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT from visible final-state kinematics,” JHEP 10 (2021) 122 [arXiv:2107.13406].
  105. P. Asadi, New solutions to the charged current B-anomalies. PhD thesis, Rutgers U., Piscataway (main), 2019.
  106. Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe, “Probing New Physics with q2superscript𝑞2q^{2}italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT distributions in B¯→D(*)⁢τ⁢ν¯→¯𝐵superscript𝐷𝜏¯𝜈\bar{B}\to D^{(*)}\tau\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG,” Phys.  Rev.  D 91 (2015) 114028 [arXiv:1412.3761].
  107. I. Caprini, L. Lellouch, and M. Neubert, “Dispersive bounds on the shape of B¯→D(∗)⁢ℓ⁢ν¯→¯𝐵superscript𝐷∗ℓ¯𝜈\bar{B}\to D^{(\ast)}\ell\bar{\nu}over¯ start_ARG italic_B end_ARG → italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT roman_ℓ over¯ start_ARG italic_ν end_ARG form factors,” Nucl.  Phys.  B 530 (1998) 153–181 [hep-ph/9712417].
  108. F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J. Robinson, “Combined analysis of semileptonic B𝐵Bitalic_B decays to D𝐷Ditalic_D and D*superscript𝐷D^{*}italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT: R⁢(D(*))𝑅superscript𝐷R(D^{(*)})italic_R ( italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT ), |Vc⁢b|subscript𝑉𝑐𝑏|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT |, and new physics,” Phys.  Rev.  D 95 (2017) 115008 [arXiv:1703.05330]. [Erratum: Phys.Rev.D 97, 059902 (2018)].
  109. F. Feruglio, P. Paradisi, and O. Sumensari, “Implications of scalar and tensor explanations of RD(∗)subscript𝑅superscript𝐷∗R_{D^{(\ast)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT,” JHEP 11 (2018) 191 [arXiv:1806.10155].
  110. D. Bigi, P. Gambino, and S. Schacht, “R⁢(D*)𝑅superscript𝐷R(D^{*})italic_R ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ), |Vc⁢b|subscript𝑉𝑐𝑏|V_{cb}|| italic_V start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT |, and the Heavy Quark Symmetry relations between form factors,” JHEP 11 (2017) 061 [arXiv:1707.09509].
  111. M. Beneke and G. Buchalla, “The Bcsubscript𝐵𝑐B_{c}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT Meson Lifetime,” Phys.  Rev.  D 53 (1996) 4991–5000 [hep-ph/9601249].
  112. R. Alonso, B. Grinstein, and J. Martin Camalich, “Lifetime of Bc−superscriptsubscript𝐵𝑐B_{c}^{-}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Constrains Explanations for Anomalies in B→D(*)⁢τ⁢ν→𝐵superscript𝐷𝜏𝜈B\to D^{(*)}\tau\nuitalic_B → italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_τ italic_ν,” Phys.  Rev. Lett.  118 (2017) 081802 [arXiv:1611.06676].
  113. R. Watanabe, “New Physics effect on Bc→J/ψ⁢τ⁢ν¯→subscript𝐵𝑐𝐽𝜓𝜏¯𝜈B_{c}\to J/\psi\tau\bar{\nu}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT → italic_J / italic_ψ italic_τ over¯ start_ARG italic_ν end_ARG in relation to the RD(*)subscript𝑅superscript𝐷R_{D^{(*)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomaly,” Phys.  Lett.  B 776 (2018) 5–9 [arXiv:1709.08644].
  114. J. Aebischer and B. Grinstein, “Standard Model prediction of the Bcsubscript𝐵𝑐B_{c}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT lifetime,” JHEP 07 (2021) 130 [arXiv:2105.02988].
  115. Particle Data Group Collaboration, “Review of Particle Physics,” PTEP 2020 (2020) 083C01.
  116. A. G. Akeroyd and C.-H. Chen, “Constraint on the branching ratio of Bc→τ⁢ν¯→subscript𝐵𝑐𝜏¯𝜈B_{c}\to\tau\bar{\nu}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT → italic_τ over¯ start_ARG italic_ν end_ARG from LEP1 and consequences for R⁢(D(*))𝑅superscript𝐷R(D^{(*)})italic_R ( italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT ) anomaly,” Phys.  Rev.  D 96 (2017) 075011 [arXiv:1708.04072].
  117. D. Bardhan and D. Ghosh, “B𝐵Bitalic_B -meson charged current anomalies: The post-Moriond 2019 status,” Phys.  Rev.  D 100 (2019) 011701 [arXiv:1904.10432].
  118. Y. Amhis, M. Hartmann, C. Helsens, D. Hill, and O. Sumensari, “Prospects for Bc+superscriptsubscript𝐵𝑐{B}_{c}^{+}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT→ τ𝜏\tauitalic_τ+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPTν𝜈\nuitalic_ντ𝜏{}_{\tau}start_FLOATSUBSCRIPT italic_τ end_FLOATSUBSCRIPT at FCC-ee,” JHEP 12 (2021) 133 [arXiv:2105.13330].
  119. S. Iguro, “Revival of H−superscript𝐻H^{-}italic_H start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT interpretation of RD(∗)subscript𝑅superscript𝐷∗R_{D^{(\ast)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomaly and closing low mass window,” Phys.  Rev.  D 105 (2022) 095011 [arXiv:2201.06565].
  120. M. Blanke, S. Iguro, and H. Zhang, “Towards ruling out the charged Higgs interpretation of the RD(∗)subscript𝑅superscript𝐷∗{R}_{D^{\left(\ast\right)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomaly,” JHEP 06 (2022) 043 [arXiv:2202.10468].
  121. HPQCD Collaboration, “Bc→J/ψ→subscript𝐵𝑐𝐽𝜓B_{c}\rightarrow J/\psiitalic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT → italic_J / italic_ψ form factors for the full q2superscript𝑞2q^{2}italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT range from lattice QCD,” Phys.  Rev.  D 102 (2020) 094518 [arXiv:2007.06957].
  122. T. Yasmeen, I. Ahmed, S. Shafaq, M. Arslan, and M. J. Aslam, “Probing New Physics in light of recent developments in b→c⁢ℓ⁢ν→𝑏𝑐ℓ𝜈b\rightarrow c\ell\nuitalic_b → italic_c roman_ℓ italic_ν transitions.” arXiv:2401.02334.
  123. S. Shivashankara, W. Wu, and A. Datta, “Λb→Λc⁢τ⁢ν¯τ→subscriptΛ𝑏subscriptΛ𝑐𝜏subscript¯𝜈𝜏\Lambda_{b}\to\Lambda_{c}\tau\bar{\nu}_{\tau}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT Decay in the Standard Model and with New Physics,” Phys.  Rev.  D 91 (2015) 115003 [arXiv:1502.07230].
  124. W. Detmold, C. Lehner, and S. Meinel, “Λb→p⁢ℓ−⁢ν¯ℓ→subscriptΛ𝑏𝑝superscriptℓsubscript¯𝜈ℓ\Lambda_{b}\to p\ell^{-}\bar{\nu}_{\ell}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → italic_p roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT and Λb→Λc⁢ℓ−⁢ν¯ℓ→subscriptΛ𝑏subscriptΛ𝑐superscriptℓsubscript¯𝜈ℓ\Lambda_{b}\to\Lambda_{c}\ell^{-}\bar{\nu}_{\ell}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT form factors from lattice QCD with relativistic heavy quarks,” Phys.  Rev.  D 92 (2015) 034503 [arXiv:1503.01421].
  125. X.-Q. Li, Y.-D. Yang, and X. Zhang, “Λb→Λc⁢τ⁢ν¯τ→subscriptΛ𝑏subscriptΛ𝑐𝜏subscript¯𝜈𝜏{\varLambda}_{b}\to{\varLambda}_{c}\tau{\overline{\nu}}_{\tau}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decay in scalar and vector leptoquark scenarios,” JHEP 02 (2017) 068 [arXiv:1611.01635].
  126. A. Datta, S. Kamali, S. Meinel, and A. Rashed, “Phenomenology of Λb→Λc⁢τ⁢ν¯τ→subscriptΛ𝑏subscriptΛ𝑐𝜏subscript¯𝜈𝜏{\Lambda}_{b}\to{\Lambda}_{c}\tau{\overline{\nu}}_{\tau}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT using lattice QCD calculations,” JHEP 08 (2017) 131 [arXiv:1702.02243].
  127. F. U. Bernlochner, Z. Ligeti, D. J. Robinson, and W. L. Sutcliffe, “Precise predictions for Λb→Λc→subscriptΛ𝑏subscriptΛ𝑐\Lambda_{b}\to\Lambda_{c}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT semileptonic decays,” Phys.  Rev.  D 99 (2019) 055008 [arXiv:1812.07593].
  128. M. Neubert, “Heavy quark symmetry,” Phys.  Rept. 245 (1994) 259–396 [hep-ph/9306320].
  129. E. Di Salvo, F. Fontanelli, and Z. J. Ajaltouni, “Detailed Study of the Decay Λb→Λc⁢τ⁢ν¯τ→subscriptΛ𝑏subscriptΛ𝑐𝜏subscript¯𝜈𝜏\Lambda_{b}\to\Lambda_{c}\tau{\bar{\nu}}_{\tau}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT,” Int.  J.  Mod.  Phys. A 33 (2018) 1850169 [arXiv:1804.05592].
  130. Q.-Y. Hu, X.-Q. Li, and Y.-D. Yang, “b→c⁢τ⁢ν→𝑏𝑐𝜏𝜈b\to c\tau\nuitalic_b → italic_c italic_τ italic_ν transitions in the standard model effective field theory,” Eur.  Phys.  J. C 79 (2019) 264 [arXiv:1810.04939].
  131. A. Ray, S. Sahoo, and R. Mohanta, “Probing new physics in semileptonic ΛbsubscriptΛ𝑏\Lambda_{b}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT decays,” Phys.  Rev.  D 99 (2019) 015015 [arXiv:1812.08314].
  132. C. Murgui, A. Peñuelas, M. Jung, and A. Pich, “Global fit to b→c⁢τ⁢ν→𝑏𝑐𝜏𝜈b\to c\tau\nuitalic_b → italic_c italic_τ italic_ν transitions,” JHEP 09 (2019) 103 [arXiv:1904.09311].
  133. N. Penalva, E. Hernández, and J. Nieves, “Further tests of lepton flavour universality from the charged lepton energy distribution in b→c→𝑏𝑐b\to citalic_b → italic_c semileptonic decays: The case of Λb→Λc⁢ℓ⁢ν¯ℓ→subscriptΛ𝑏subscriptΛ𝑐ℓsubscript¯𝜈ℓ\Lambda_{b}\to\Lambda_{c}\ell\bar{\nu}_{\ell}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT roman_ℓ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT,” Phys.  Rev.  D 100 (2019) 113007 [arXiv:1908.02328].
  134. M. Ferrillo, A. Mathad, P. Owen, and N. Serra, “Probing effects of new physics in Λb0→Λc+⁢μ−⁢ν¯μ→subscriptsuperscriptΛ0𝑏subscriptsuperscriptΛ𝑐superscript𝜇subscript¯𝜈𝜇\Lambda^{0}_{b}\to\Lambda^{+}_{c}\mu^{-}\bar{\nu}_{\mu}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT decays,” JHEP 12 (2019) 148 [arXiv:1909.04608].
  135. X.-L. Mu, Y. Li, Z.-T. Zou, and B. Zhu, “Investigation of effects of new physics in Λb→Λc⁢τ⁢ν¯τ→subscriptΛ𝑏subscriptΛ𝑐𝜏subscript¯𝜈𝜏\Lambda_{b}\to\Lambda_{c}\tau\bar{\nu}_{\tau}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT decay,” Phys.  Rev.  D 100 (2019) 113004 [arXiv:1909.10769].
  136. LHCb Collaboration, “Measurement of the shape of the Λb0→Λc+⁢μ−⁢ν¯μ→superscriptsubscriptΛ𝑏0superscriptsubscriptΛ𝑐superscript𝜇subscript¯𝜈𝜇\Lambda_{b}^{0}\to\Lambda_{c}^{+}\mu^{-}\overline{\nu}_{\mu}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT differential decay rate,” Phys.  Rev. D 96 (2017) 112005 [arXiv:1709.01920].
  137. DELPHI Collaboration, “Measurement of the Λb0subscriptsuperscriptΛ0𝑏\Lambda^{0}_{b}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT decay form-factor,” Phys.  Lett.  B 585 (2004) 63–84 [hep-ex/0403040].
  138. CDF Collaboration, “First Measurement of the Ratio of Branching Fractions B⁢(Λb0→Λc+⁢μ−⁢ν¯μ)/B⁢(Λb0→Λc+⁢π−)𝐵→subscriptsuperscriptΛ0𝑏subscriptsuperscriptΛ𝑐superscript𝜇subscript¯𝜈𝜇𝐵→subscriptsuperscriptΛ0𝑏subscriptsuperscriptΛ𝑐superscript𝜋B(\Lambda^{0}_{b}\to\Lambda^{+}_{c}\mu^{-}\bar{\nu}_{\mu})/B(\Lambda^{0}_{b}% \to\Lambda^{+}_{c}\pi^{-})italic_B ( roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ) / italic_B ( roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ),” Phys.  Rev.  D 79 (2009) 032001 [arXiv:0810.3213].
  139. LHCb Collaboration, “Determination of the quark coupling strength |Vu⁢b|subscript𝑉𝑢𝑏|V_{ub}|| italic_V start_POSTSUBSCRIPT italic_u italic_b end_POSTSUBSCRIPT | using baryonic decays,” Nature Phys.  11 (2015) 743–747 [arXiv:1504.01568].
  140. LHCb Collaboration, “Observation of the decay Λb0→Λc+⁢τ−⁢ν¯τ→superscriptsubscriptΛ𝑏0superscriptsubscriptΛ𝑐superscript𝜏subscript¯𝜈𝜏\Lambda_{b}^{0}\rightarrow\Lambda_{c}^{+}\tau^{-}\overline{\nu}_{\tau}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT,” Phys.  Rev. Lett.  128 (2022) 191803 [arXiv:2201.03497].
  141. F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J. Robinson, “Interpreting LHCb’s Λb→Λc⁢τ⁢ν¯→subscriptΛ𝑏subscriptΛ𝑐𝜏¯𝜈\Lambda_{b}\to\Lambda_{c}\tau\bar{\nu}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT → roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_τ over¯ start_ARG italic_ν end_ARG measurement and puzzles in semileptonic ΛbsubscriptΛ𝑏\Lambda_{b}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT decays,” Phys.  Rev.  D 107 (2023) L011502 [arXiv:2206.11282].
  142. S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, “Global analysis of b→s⁢ℓ⁢ℓ→𝑏𝑠ℓℓb\to s\ell\ellitalic_b → italic_s roman_ℓ roman_ℓ anomalies,” JHEP 06 (2016) 092 [arXiv:1510.04239].
  143. R.-X. Shi, L.-S. Geng, B. Grinstein, S. Jäger, and J. Martin Camalich, “Revisiting the new-physics interpretation of the b→c⁢τ⁢ν→𝑏𝑐𝜏𝜈b\to c\tau\nuitalic_b → italic_c italic_τ italic_ν data,” JHEP 12 (2019) 065 [arXiv:1905.08498].
  144. D. A. Faroughy, A. Greljo, and J. F. Kamenik, “Confronting lepton flavor universality violation in B decays with high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT tau lepton searches at LHC,” Phys. Lett.  B 764 (2017) 126–134 [arXiv:1609.07138].
  145. S. Iguro, “Conclusive probe of the charged Higgs solution of P5’ and RD(*) discrepancies,” Phys.  Rev.  D 107 (2023) 095004 [arXiv:2302.08935].
  146. M. Tanaka, “Charged Higgs effects on exclusive semitauonic B𝐵Bitalic_B decays,” Z.  Phys.  C 67 (1995) 321–326 [hep-ph/9411405].
  147. K. Cheung, W.-Y. Keung, and P.-Y. Tseng, “Isodoublet vector leptoquark solution to the muon g−2,RK,K⁣*,RD,D⁣*,𝑔2subscript𝑅𝐾𝐾subscript𝑅𝐷𝐷g-2,R_{K,K*},R_{D,D*},italic_g - 2 , italic_R start_POSTSUBSCRIPT italic_K , italic_K * end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_D , italic_D * end_POSTSUBSCRIPT , and W𝑊Witalic_W-mass anomalies,” Phys.  Rev.  D 106 (2022) 015029 [arXiv:2204.05942].
  148. S. Iguro and Y. Omura, “A closer look at isodoublet vector leptoquark solution to the RD(∗)subscript𝑅superscript𝐷∗{R}_{D^{\left(\ast\right)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomaly,” JHEP 11 (2023) 084 [arXiv:2306.00052].
  149. L. Di Luzio, A. Greljo, and M. Nardecchia, “Gauge leptoquark as the origin of B-physics anomalies,” Phys.  Rev.  D 96 (2017) 115011 [arXiv:1708.08450].
  150. A. Greljo and B. A. Stefanek, “Third family quark–lepton unification at the TeV scale,” Phys.  Lett.  B 782 (2018) 131–138 [arXiv:1802.04274].
  151. C. Cornella, J. Fuentes-Martin, and G. Isidori, “Revisiting the vector leptoquark explanation of the B-physics anomalies,” JHEP 07 (2019) 168 [arXiv:1903.11517].
  152. L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia, and S. Renner, “Maximal Flavour Violation: a Cabibbo mechanism for leptoquarks,” JHEP 11 (2018) 081 [arXiv:1808.00942].
  153. M. Bordone, C. Cornella, J. Fuentes-Martin, and G. Isidori, “A three-site gauge model for flavor hierarchies and flavor anomalies,” Phys.  Lett.  B 779 (2018) 317–323 [arXiv:1712.01368].
  154. M. Bordone, C. Cornella, J. Fuentes-Martín, and G. Isidori, “Low-energy signatures of the PS3superscriptPS3\mathrm{PS}^{3}roman_PS start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT model: from B𝐵Bitalic_B-physics anomalies to LFV,” JHEP 10 (2018) 148 [arXiv:1805.09328].
  155. M. Blanke and A. Crivellin, “B𝐵Bitalic_B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background,” Phys.  Rev. Lett.  121 (2018) 011801 [arXiv:1801.07256].
  156. S. Balaji, R. Foot, and M. A. Schmidt, “Chiral SU(4) explanation of the b→s→𝑏𝑠b\to sitalic_b → italic_s anomalies,” Phys. Rev.  D 99 (2019) 015029 [arXiv:1809.07562].
  157. S. Balaji and M. A. Schmidt, “Unified SU(4) theory for the RD(*)subscript𝑅superscript𝐷R_{D^{(*)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and RK(*)subscript𝑅superscript𝐾R_{K^{(*)}}italic_R start_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomalies,” Phys.  Rev.  D 101 (2020) 015026 [arXiv:1911.08873].
  158. J. Fuentes-Martín and P. Stangl, “Third-family quark-lepton unification with a fundamental composite Higgs,” Phys.  Lett.  B 811 (2020) 135953 [arXiv:2004.11376].
  159. J. Fuentes-Martín, G. Isidori, M. König, and N. Selimović, “Vector Leptoquarks Beyond Tree Level III: Vector-like Fermions and Flavor-Changing Transitions,” Phys. Rev.  D 102 (2020) 115015 [arXiv:2009.11296].
  160. D. Guadagnoli, M. Reboud, and P. Stangl, “The Dark Side of 4321,” JHEP 10 (2020) 084 [arXiv:2005.10117].
  161. M. J. Dolan, T. P. Dutka, and R. R. Volkas, “Lowering the scale of Pati-Salam breaking through seesaw mixing,” JHEP 05 (2021) 199 [arXiv:2012.05976].
  162. S. F. King, “Twin Pati-Salam theory of flavour with a TeV scale vector leptoquark,” JHEP 11 (2021) 161 [arXiv:2106.03876].
  163. S. Iguro, J. Kawamura, S. Okawa, and Y. Omura, “TeV-scale vector leptoquark from Pati-Salam unification with vectorlike families,” Phys.  Rev.  D 104 (2021) 075008 [arXiv:2103.11889].
  164. S. Iguro, J. Kawamura, S. Okawa, and Y. Omura, “Importance of vector leptoquark-scalar box diagrams in Pati-Salam unification with vector-like families,” JHEP 07 (2022) 022 [arXiv:2201.04638].
  165. J. Heeck and D. Teresi, “Pati-Salam explanations of the B-meson anomalies,” JHEP 12 (2018) 103 [arXiv:1808.07492].
  166. D. Marzocca, “Addressing the B-physics anomalies in a fundamental Composite Higgs Model,” JHEP 07 (2018) 121 [arXiv:1803.10972].
  167. D. Marzocca and S. Trifinopoulos, “Minimal Explanation of Flavor Anomalies: B-Meson Decays, Muon Magnetic Moment, and the Cabibbo Angle,” Phys.  Rev. Lett.  127 (2021) 061803 [arXiv:2104.05730].
  168. K. S. Babu, P. S. B. Dev, S. Jana, and A. Thapa, “Unified framework for B𝐵Bitalic_B-anomalies, muon g−2𝑔2g-2italic_g - 2 and neutrino masses,” JHEP 03 (2021) 179 [arXiv:2009.01771].
  169. L. Di Luzio, M. Kirk, A. Lenz, and T. Rauh, “Δ⁢MsΔsubscript𝑀𝑠\Delta M_{s}roman_Δ italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT theory precision confronts flavour anomalies,” JHEP 12 (2019) 009 [arXiv:1909.11087].
  170. L. Calibbi, A. Crivellin, and T. Li, “Model of vector leptoquarks in view of the B𝐵Bitalic_B-physics anomalies,” Phys.  Rev.  D 98 (2018) 115002 [arXiv:1709.00692].
  171. A. Crivellin, D. Müller, and F. Saturnino, “Flavor Phenomenology of the Leptoquark Singlet-Triplet Model,” JHEP 06 (2020) 020 [arXiv:1912.04224].
  172. CMS Collaboration, “Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ𝜏\tauitalic_τ leptons and two jets in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 03 (2019) 170 [arXiv:1811.00806].
  173. ATLAS Collaboration, “Searches for third-generation scalar leptoquarks in s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV pp collisions with the ATLAS detector,” JHEP 06 (2019) 144 [arXiv:1902.08103].
  174. ATLAS Collaboration, “Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ𝜏\tauitalic_τ-lepton in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 06 (2021) 179 [arXiv:2101.11582].
  175. E. E. Jenkins, A. V. Manohar, and M. Trott, “Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence,” JHEP 01 (2014) 035 [arXiv:1310.4838].
  176. R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, “Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology,” JHEP 04 (2014) 159 [arXiv:1312.2014].
  177. M. González-Alonso, J. Martin Camalich, and K. Mimouni, “Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays,” Phys.  Lett.  B 772 (2017) 777–785 [arXiv:1706.00410].
  178. J. Aebischer, A. Crivellin, and C. Greub, “QCD improved matching for semileptonic B decays with leptoquarks,” Phys.  Rev.  D 99 (2019) 055002 [arXiv:1811.08907].
  179. R. Barbieri, G. R. Dvali, and L. J. Hall, “Predictions from a U(2) flavor symmetry in supersymmetric theories,” Phys.  Lett.  B 377 (1996) 76–82 [hep-ph/9512388].
  180. R. Barbieri, L. J. Hall, and A. Romanino, “Consequences of a U(2) flavor symmetry,” Phys. Lett.  B 401 (1997) 47–53 [hep-ph/9702315].
  181. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, and D. M. Straub, “U⁢(2)𝑈2U(2)italic_U ( 2 ) and Minimal Flavour Violation in Supersymmetry,” Eur.  Phys.  J. C 71 (2011) 1725 [arXiv:1105.2296].
  182. R. Barbieri, P. Campli, G. Isidori, F. Sala, and D. M. Straub, “B𝐵Bitalic_B-decay CP-asymmetries in SUSY with a U⁢(2)3𝑈superscript23U(2)^{3}italic_U ( 2 ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT flavour symmetry,” Eur.  Phys.  J. C 71 (2011) 1812 [arXiv:1108.5125].
  183. R. Barbieri, D. Buttazzo, F. Sala, and D. M. Straub, “Flavour physics from an approximate U⁢(2)3𝑈superscript23U(2)^{3}italic_U ( 2 ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT symmetry,” JHEP 07 (2012) 181 [arXiv:1203.4218].
  184. G. Blankenburg, G. Isidori, and J. Jones-Perez, “Neutrino Masses and LFV from Minimal Breaking of U⁢(3)5𝑈superscript35U(3)^{5}italic_U ( 3 ) start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT and U⁢(2)5𝑈superscript25U(2)^{5}italic_U ( 2 ) start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT flavor Symmetries,” Eur.  Phys.  J. C 72 (2012) 2126 [arXiv:1204.0688].
  185. R. Barbieri, G. Isidori, A. Pattori, and F. Senia, “Anomalies in B𝐵Bitalic_B-decays and U⁢(2)𝑈2U(2)italic_U ( 2 ) flavour symmetry,” Eur.  Phys.  J. C 76 (2016) 67 [arXiv:1512.01560].
  186. J. Fuentes-Martín, G. Isidori, J. Pagès, and K. Yamamoto, “With or without U(2)? Probing non-standard flavor and helicity structures in semileptonic B decays,” Phys.  Lett.  B 800 (2020) 135080 [arXiv:1909.02519].
  187. M. Fernández Navarro and S. F. King, “B-anomalies in a twin Pati-Salam theory of flavour including the 2022 LHCb RK(∗)subscript𝑅superscript𝐾∗{R}_{K^{\left(\ast\right)}}italic_R start_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT ( ∗ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT analysis,” JHEP 02 (2023) 188 [arXiv:2209.00276].
  188. S. Iguro and T. Kitahara, “Electric Dipole Moments as Probes of B𝐵Bitalic_B Anomaly.” arXiv:2307.11751.
  189. C. H. García-Duque, J. H. Muñoz, N. Quintero, and E. Rojas, “Extra gauge bosons and lepton flavor universality violation in ΥΥ\Upsilonroman_Υ and B𝐵Bitalic_B meson decays,” Phys. Rev.  D 103 (2021) 073003 [arXiv:2103.00344].
  190. C. H. García-Duque, J. M. Cabarcas, J. H. Muñoz, N. Quintero, and E. Rojas, “Singlet vector leptoquark model facing recent LHCb and BABAR measurements,” Nucl.  Phys.  B 988 (2023) 116115 [arXiv:2209.04753].
  191. S. Descotes-Genon, S. Fajfer, J. F. Kamenik, and M. Novoa-Brunet, “Testing lepton flavor universality in Υ⁢(4⁢S)Υ4𝑆\Upsilon(4S)roman_Υ ( 4 italic_S ) decays,” Phys.  Rev.  D 103 (2021) 113009 [arXiv:2104.06842].
  192. CLEO Collaboration, “First Observation of Υ⁢(3⁢S)→τ+⁢τ−→Υ3𝑆superscript𝜏superscript𝜏\Upsilon(3S)\to\tau^{+}\tau^{-}roman_Υ ( 3 italic_S ) → italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and Tests of Lepton Universality in Upsilon Decays,” Phys.  Rev.  Lett. 98 (2007) 052002 [hep-ex/0607019].
  193. R. Van Royen and V. F. Weisskopf, “Hadron Decay Processes and the Quark Model,” Nuovo Cim.  A 50 (1967) 617–645. [Erratum: Nuovo Cim.A 51, 583 (1967)].
  194. D. Y. Bardin and G. Passarino, The standard model in the making: Precision study of the electroweak interactions. Clarendon Press, 1999.
  195. S. Matsuzaki, K. Nishiwaki, and K. Yamamoto, “Simultaneous interpretation of K𝐾Kitalic_K and B𝐵Bitalic_B anomalies in terms of chiral-flavorful vectors,” JHEP 11 (2018) 164 [arXiv:1806.02312].
  196. A. Ishikawa. Private communication.
  197. W. Buchmuller, R. Ruckl, and D. Wyler, “Leptoquarks in Lepton - Quark Collisions,” Phys. Lett.  B 191 (1987) 442–448. [Erratum: Phys.Lett.B 448, 320–320 (1999)].
  198. A. Angelescu, D. Bečirević, D. A. Faroughy, and O. Sumensari, “Closing the window on single leptoquark solutions to the B𝐵Bitalic_B-physics anomalies,” JHEP 10 (2018) 183 [arXiv:1808.08179].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube