Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Data-Driven Moving Horizon Estimation for Linear Discrete-Time Systems (2210.09017v7)

Published 17 Oct 2022 in eess.SY and cs.SY

Abstract: In this paper, a robust data-driven moving horizon estimation (MHE) scheme for linear time-invariant discrete-time systems is introduced. The scheme solely relies on offline collected data without employing any system identification step. We prove practical robust exponential stability for the setting where both the online measurements and the offline collected data are corrupted by non-vanishing and bounded noise. The behavior of the novel robust data-driven MHE scheme is illustrated by means of simulation examples and compared to a standard model-based MHE scheme, where the model is identified using the same offline data as for the data-driven MHE scheme.

Citations (9)

Summary

We haven't generated a summary for this paper yet.