Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

spatial-dccrn: dccrn equipped with frame-level angle feature and hybrid filtering for multi-channel speech enhancement (2210.08802v1)

Published 17 Oct 2022 in eess.AS and cs.SD

Abstract: Recently, multi-channel speech enhancement has drawn much interest due to the use of spatial information to distinguish target speech from interfering signal. To make full use of spatial information and neural network based masking estimation, we propose a multi-channel denoising neural network -- Spatial DCCRN. Firstly, we extend S-DCCRN to multi-channel scenario, aiming at performing cascaded sub-channel and full-channel processing strategy, which can model different channels separately. Moreover, instead of only adopting multi-channel spectrum or concatenating first-channel's magnitude and IPD as the model's inputs, we apply an angle feature extraction module (AFE) to extract frame-level angle feature embeddings, which can help the model to apparently perceive spatial information. Finally, since the phenomenon of residual noise will be more serious when the noise and speech exist in the same time frequency (TF) bin, we particularly design a masking and mapping filtering method to substitute the traditional filter-and-sum operation, with the purpose of cascading coarsely denoising, dereverberation and residual noise suppression. The proposed model, Spatial-DCCRN, has surpassed EaBNet, FasNet as well as several competitive models on the L3DAS22 Challenge dataset. Not only the 3D scenario, Spatial-DCCRN outperforms state-of-the-art (SOTA) model MIMO-UNet by a large margin in multiple evaluation metrics on the multi-channel ConferencingSpeech2021 Challenge dataset. Ablation studies also demonstrate the effectiveness of different contributions.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.