Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Adaptive Neural Network Control of Time-Varying State Constrained Nonlinear Systems (2210.04897v1)

Published 9 Oct 2022 in eess.SY and cs.SY

Abstract: This paper deals with the tracking control problem for a very simple class of unknown nonlinear systems. In this paper, we presents a design strategy for tracking control of time-varying state constrained nonlinear systems in an adaptive framework. The controller is designed using the backstepping method. While designing it, Barrier Lyapunov Function (BLF) is used so that the state variables do not contravene its constraints. In order to cope with the unknown dynamics of the system, an online approximator is designed using a neural network with a novel adaptive law for its weight update. To make the controller robust and computationally inexpensive, a disturbance observer is proposed to cope with the disturbance along with neural network approximation error and the time derivative of virtual control input. The effectiveness of the proposed approach is demonstrated through a simulation study.

Summary

We haven't generated a summary for this paper yet.