Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Online Resource Allocation with Samples (2210.04774v1)

Published 10 Oct 2022 in math.OC and econ.TH

Abstract: We study an online resource allocation problem under uncertainty about demand and about the reward of each type of demand (agents) for the resource. Even though dealing with demand uncertainty in resource allocation problems has been the topic of many papers in the literature, the challenge of not knowing rewards has been barely explored. The lack of knowledge about agents' rewards is inspired by the problem of allocating units of a new resource (e.g., newly developed vaccines or drugs) with unknown effectiveness/value. For such settings, we assume that we can \emph{test} the market before the allocation period starts. During the test period, we sample each agent in the market with probability $p$. We study how to optimally exploit the \emph{sample information} in our online resource allocation problem under adversarial arrival processes. We present an asymptotically optimal algorithm that achieves $1-\Theta(1/(p\sqrt{m}))$ competitive ratio, where $m$ is the number of available units of the resource. By characterizing an upper bound on the competitive ratio of any randomized and deterministic algorithm, we show that our competitive ratio of $1-\Theta(1/(p\sqrt{m}))$ is tight for any $p =\omega(1/\sqrt{m})$. That asymptotic optimality is possible with sample information highlights the significant advantage of running a test period for new resources. We demonstrate the efficacy of our proposed algorithm using a dataset that contains the number of COVID-19 related hospitalized patients across different age groups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.