Papers
Topics
Authors
Recent
2000 character limit reached

Are All Steps Equally Important? Benchmarking Essentiality Detection of Events (2210.04074v3)

Published 8 Oct 2022 in cs.CL and cs.AI

Abstract: Natural language expresses events with varying granularities, where coarse-grained events (goals) can be broken down into finer-grained event sequences (steps). A critical yet overlooked aspect of understanding event processes is recognizing that not all step events hold equal importance toward the completion of a goal. In this paper, we address this gap by examining the extent to which current models comprehend the essentiality of step events in relation to a goal event. Cognitive studies suggest that such capability enables machines to emulate human commonsense reasoning about preconditions and necessary efforts of everyday tasks. We contribute a high-quality corpus of (goal, step) pairs gathered from the community guideline website WikiHow, with steps manually annotated for their essentiality concerning the goal by experts. The high inter-annotator agreement demonstrates that humans possess a consistent understanding of event essentiality. However, after evaluating multiple statistical and largescale pre-trained LLMs, we find that existing approaches considerably underperform compared to humans. This observation highlights the need for further exploration into this critical and challenging task. The dataset and code are available at http://cogcomp.org/page/publication_view/1023.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.