Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reading Chinese in Natural Scenes with a Bag-of-Radicals Prior (2210.02576v1)

Published 5 Oct 2022 in cs.CV and cs.AI

Abstract: Scene text recognition (STR) on Latin datasets has been extensively studied in recent years, and state-of-the-art (SOTA) models often reach high accuracy. However, the performance on non-Latin transcripts, such as Chinese, is not satisfactory. In this paper, we collect six open-source Chinese STR datasets and evaluate a series of classic methods performing well on Latin datasets, finding a significant performance drop. To improve the performance on Chinese datasets, we propose a novel radical-embedding (RE) representation to utilize the ideographic descriptions of Chinese characters. The ideographic descriptions of Chinese characters are firstly converted to bags of radicals and then fused with learnable character embeddings by a character-vector-fusion-module (CVFM). In addition, we utilize a bag of radicals as supervision signals for multi-task training to improve the ideographic structure perception of our model. Experiments show performance of the model with RE + CVFM + multi-task training is superior compared with the baseline on six Chinese STR datasets. In addition, we utilize a bag of radicals as supervision signals for multi-task training to improve the ideographic structure perception of our model. Experiments show performance of the model with RE + CVFM + multi-task training is superior compared with the baseline on six Chinese STR datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Liu Yongbin (1 paper)
  2. Liu Qingjie (1 paper)
  3. Chen Jiaxin (1 paper)
  4. Wang Yunhong (1 paper)
Citations (1)