Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Continuous Monte Carlo Graph Search (2210.01426v3)

Published 4 Oct 2022 in cs.AI, cs.LG, and cs.RO

Abstract: Online planning is crucial for high performance in many complex sequential decision-making tasks. Monte Carlo Tree Search (MCTS) employs a principled mechanism for trading off exploration for exploitation for efficient online planning, and it outperforms comparison methods in many discrete decision-making domains such as Go, Chess, and Shogi. Subsequently, extensions of MCTS to continuous domains have been developed. However, the inherent high branching factor and the resulting explosion of the search tree size are limiting the existing methods. To address this problem, we propose Continuous Monte Carlo Graph Search (CMCGS), an extension of MCTS to online planning in environments with continuous state and action spaces. CMCGS takes advantage of the insight that, during planning, sharing the same action policy between several states can yield high performance. To implement this idea, at each time step, CMCGS clusters similar states into a limited number of stochastic action bandit nodes, which produce a layered directed graph instead of an MCTS search tree. Experimental evaluation shows that CMCGS outperforms comparable planning methods in several complex continuous DeepMind Control Suite benchmarks and 2D navigation and exploration tasks with limited sample budgets. Furthermore, CMCGS can be scaled up through parallelization, and it outperforms the Cross-Entropy Method (CEM) in continuous control with learned dynamics models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: