Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Conventional Headway Control with Reinforcement Learning to Avoid Bus Bunching (2210.00201v1)

Published 1 Oct 2022 in cs.MA

Abstract: Bus bunching is a natural-occurring phenomenon that undermines the efficiency and stability of the public transportation system. The mainstream solutions control the bus to intentionally stay longer at certain stations. Existing control methods include conventional methods that provide a formula to calculate the control time and reinforcement learning (RL) methods that determine the control policy through repeated interactions with the system. In this paper, we propose an integrated proximal policy optimization model with dual-headway (IPPO-DH). IPPO-DH integrates the conventional headway control with reinforcement learning, so that it acquires the advantages of both algorithms -- it is more efficient in normal environments and more stable in harsh ones. To demonstrate such an advantage, we design a bus simulation environment and compare IPPO-DH with RL and several conventional methods. The results show that the proposed model maintains the application value of the conventional method by avoiding the instability of the RL method in certain environments, and improves the efficiency compared with the conventional control, shedding new light on real-world bus transit system optimization.

Summary

We haven't generated a summary for this paper yet.