Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Draw Your Art Dream: Diverse Digital Art Synthesis with Multimodal Guided Diffusion (2209.13360v2)

Published 27 Sep 2022 in cs.CV

Abstract: Digital art synthesis is receiving increasing attention in the multimedia community because of engaging the public with art effectively. Current digital art synthesis methods usually use single-modality inputs as guidance, thereby limiting the expressiveness of the model and the diversity of generated results. To solve this problem, we propose the multimodal guided artwork diffusion (MGAD) model, which is a diffusion-based digital artwork generation approach that utilizes multimodal prompts as guidance to control the classifier-free diffusion model. Additionally, the contrastive language-image pretraining (CLIP) model is used to unify text and image modalities. Extensive experimental results on the quality and quantity of the generated digital art paintings confirm the effectiveness of the combination of the diffusion model and multimodal guidance. Code is available at https://github.com/haha-lisa/MGAD-multimodal-guided-artwork-diffusion.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com