Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Predicting Affective Vocal Bursts with Finetuned wav2vec 2.0 (2209.13146v2)

Published 27 Sep 2022 in eess.AS

Abstract: The studies of predicting affective states from human voices have relied heavily on speech. This study, indeed, explores the recognition of humans' affective state from their vocal burst, a short non-verbal vocalization. Borrowing the idea from the recent success of wav2vec 2.0, we evaluated finetuned wav2vec 2.0 models from different datasets to predict the affective state of the speaker from their vocal burst. The finetuned wav2vec 2.0 models are then trained on the vocal burst data. The results show that the finetuned wav2vec 2.0 models, particularly on an affective speech dataset, outperform the baseline model, which is handcrafted acoustic features. However, there is no large gap between the model finetuned on non-affective speech dataset and affective speech dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.