Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Efficient Multitask Learning Architecture for Affective Vocal Burst Analysis (2209.13914v1)

Published 28 Sep 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Affective speech analysis is an ongoing topic of research. A relatively new problem in this field is the analysis of vocal bursts, which are nonverbal vocalisations such as laughs or sighs. Current state-of-the-art approaches to address affective vocal burst analysis are mostly based on wav2vec2 or HuBERT features. In this paper, we investigate the use of the wav2vec successor data2vec in combination with a multitask learning pipeline to tackle different analysis problems at once. To assess the performance of our efficient multitask learning architecture, we participate in the 2022 ACII Affective Vocal Burst Challenge, showing that our approach substantially outperforms the baseline established there in three different subtasks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.