Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Dislocated Accountabilities in the AI Supply Chain: Modularity and Developers' Notions of Responsibility (2209.09780v3)

Published 20 Sep 2022 in cs.CY, cs.HC, and cs.SE

Abstract: Responsible artificial intelligence guidelines ask engineers to consider how their systems might harm. However, contemporary artificial intelligence systems are built by composing many preexisting software modules that pass through many hands before becoming a finished product or service. How does this shape responsible artificial intelligence practice? In interviews with 27 artificial intelligence engineers across industry, open source, and academia, our participants often did not see the questions posed in responsible artificial intelligence guidelines to be within their agency, capability, or responsibility to address. We use Suchman's "located accountability" to show how responsible artificial intelligence labor is currently organized and to explore how it could be done differently. We identify cross-cutting social logics, like modularizability, scale, reputation, and customer orientation, that organize which responsible artificial intelligence actions do take place and which are relegated to low status staff or believed to be the work of the next or previous person in the imagined "supply chain." We argue that current responsible artificial intelligence interventions, like ethics checklists and guidelines that assume panoptical knowledge and control over systems, could be improved by taking a located accountability approach, recognizing where relations and obligations might intertwine inside and outside of this supply chain.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube