Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Reasoning Transformer for Image Parsing (2209.09545v1)

Published 20 Sep 2022 in cs.CV

Abstract: Capturing the long-range dependencies has empirically proven to be effective on a wide range of computer vision tasks. The progressive advances on this topic have been made through the employment of the transformer framework with the help of the multi-head attention mechanism. However, the attention-based image patch interaction potentially suffers from problems of redundant interactions of intra-class patches and unoriented interactions of inter-class patches. In this paper, we propose a novel Graph Reasoning Transformer (GReaT) for image parsing to enable image patches to interact following a relation reasoning pattern. Specifically, the linearly embedded image patches are first projected into the graph space, where each node represents the implicit visual center for a cluster of image patches and each edge reflects the relation weight between two adjacent nodes. After that, global relation reasoning is performed on this graph accordingly. Finally, all nodes including the relation information are mapped back into the original space for subsequent processes. Compared to the conventional transformer, GReaT has higher interaction efficiency and a more purposeful interaction pattern. Experiments are carried out on the challenging Cityscapes and ADE20K datasets. Results show that GReaT achieves consistent performance gains with slight computational overheads on the state-of-the-art transformer baselines.

Citations (14)

Summary

We haven't generated a summary for this paper yet.