Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A study on the deviations in performance of FNNs and CNNs in the realm of grayscale adversarial images (2209.08262v1)

Published 17 Sep 2022 in cs.CV and cs.LG

Abstract: Neural Networks are prone to having lesser accuracy in the classification of images with noise perturbation. Convolutional Neural Networks, CNNs are known for their unparalleled accuracy in the classification of benign images. But our study shows that they are extremely vulnerable to noise addition while Feed-forward Neural Networks, FNNs show very less correspondence with noise perturbation, maintaining their accuracy almost undisturbed. FNNs are observed to be better at classifying noise-intensive, single-channeled images that are just sheer noise to human vision. In our study, we have used the hand-written digits dataset, MNIST with the following architectures: FNNs with 1 and 2 hidden layers and CNNs with 3, 4, 6 and 8 convolutions and analyzed their accuracies. FNNs stand out to show that irrespective of the intensity of noise, they have a classification accuracy of more than 85%. In our analysis of CNNs with this data, the deceleration of classification accuracy of CNN with 8 convolutions was half of that of the rest of the CNNs. Correlation analysis and mathematical modelling of the accuracy trends act as roadmaps to these conclusions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.