Papers
Topics
Authors
Recent
2000 character limit reached

Dynamics-informed deconvolutional neural networks for super-resolution identification of regime changes in epidemiological time series (2209.07802v1)

Published 16 Sep 2022 in cs.LG, cs.CV, q-bio.PE, and stat.AP

Abstract: Inferring the timing and amplitude of perturbations in epidemiological systems from their stochastically spread low-resolution outcomes is as relevant as challenging. It is a requirement for current approaches to overcome the need to know the details of the perturbations to proceed with the analyses. However, the general problem of connecting epidemiological curves with the underlying incidence lacks the highly effective methodology present in other inverse problems, such as super-resolution and dehazing from computer vision. Here, we develop an unsupervised physics-informed convolutional neural network approach in reverse to connect death records with incidence that allows the identification of regime changes at single-day resolution. Applied to COVID-19 data with proper regularization and model-selection criteria, the approach can identify the implementation and removal of lockdowns and other nonpharmaceutical interventions with 0.93-day accuracy over the time span of a year.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.