Papers
Topics
Authors
Recent
2000 character limit reached

Open Set Recognition For Music Genre Classification (2209.07548v2)

Published 15 Sep 2022 in eess.AS and math.OC

Abstract: We explore segmentation of known and unknown genre classes using the open source GTZAN and FMA datasets. For each, we begin with best-case closed set genre classification, then we apply open set recognition methods. We offer an algorithm for the music genre classification task using OSR. We demonstrate the ability to retrieve known genres and as well identification of aural patterns for novel genres (not appearing in a training set). We conduct four experiments, each containing a different set of known and unknown classes, using the GTZAN and the FMA datasets to establish a baseline capacity for novel genre detection. We employ grid search on both OpenMax and softmax to determine the optimal total classification accuracy for each experimental setup, and illustrate interaction between genre labelling and open set recognition accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.