Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning of Artist Group Factors to Musical Genre Classification (1805.02043v2)

Published 5 May 2018 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: The automated recognition of music genres from audio information is a challenging problem, as genre labels are subjective and noisy. Artist labels are less subjective and less noisy, while certain artists may relate more strongly to certain genres. At the same time, at prediction time, it is not guaranteed that artist labels are available for a given audio segment. Therefore, in this work, we propose to apply the transfer learning framework, learning artist-related information which will be used at inference time for genre classification. We consider different types of artist-related information, expressed through artist group factors, which will allow for more efficient learning and stronger robustness to potential label noise. Furthermore, we investigate how to achieve the highest validation accuracy on the given FMA dataset, by experimenting with various kinds of transfer methods, including single-task transfer, multi-task transfer and finally multi-task learning.

Citations (17)

Summary

We haven't generated a summary for this paper yet.