Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reconstruction of Long-Term Historical Demand Data

Published 10 Sep 2022 in cs.LG and stat.AP | (2209.04693v1)

Abstract: Long-term planning of a robust power system requires the understanding of changing demand patterns. Electricity demand is highly weather sensitive. Thus, the supply side variation from introducing intermittent renewable sources, juxtaposed with variable demand, will introduce additional challenges in the grid planning process. By understanding the spatial and temporal variability of temperature over the US, the response of demand to natural variability and climate change-related effects on temperature can be separated, especially because the effects due to the former factor are not known. Through this project, we aim to better support the technology & policy development process for power systems by developing machine and deep learning 'back-forecasting' models to reconstruct multidecadal demand records and study the natural variability of temperature and its influence on demand.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.