Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Recommender Systems and Algorithmic Hate (2209.02159v1)

Published 5 Sep 2022 in cs.HC

Abstract: Despite increasing reliance on personalization in digital platforms, many algorithms that curate content or information for users have been met with resistance. When users feel dissatisfied or harmed by recommendations, this can lead users to hate, or feel negatively towards these personalized systems. Algorithmic hate detrimentally impacts both users and the system, and can result in various forms of algorithmic harm, or in extreme cases can lead to public protests against ''the algorithm'' in question. In this work, we summarize some of the most common causes of algorithmic hate and their negative consequences through various case studies of personalized recommender systems. We explore promising future directions for the RecSys research community that could help alleviate algorithmic hate and improve the relationship between recommender systems and their users.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com