2000 character limit reached
On the algebraic connectivity of token graphs (2209.01030v1)
Published 2 Sep 2022 in math.CO
Abstract: We study the algebraic connectivity (or second Laplacian eigenvalue) of token graphs, also called symmetric powers of graphs. The $k$-token graph $F_k(G)$ of a graph $G$ is the graph whose vertices are the $k$-subsets of vertices from $G$, two of which being adjacent whenever their symmetric difference is a pair of adjacent vertices in $G$. Recently, it was conjectured that the algebraic connectivity of $F_k(G)$ equals the algebraic connectivity of $G$. In this paper, we prove the conjecture for new infinite families of graphs, such as trees and graphs with maximum degree large enough.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.