2000 character limit reached
Tree-Based Adaptive Model Learning (2209.00122v2)
Published 31 Aug 2022 in cs.FL and cs.LG
Abstract: We extend the Kearns-Vazirani learning algorithm to be able to handle systems that change over time. We present a new learning algorithm that can reuse and update previously learned behavior, implement it in the LearnLib library, and evaluate it on large examples, to which we make small adjustments between two runs of the algorithm. In these experiments our algorithm significantly outperforms both the classic Kearns-Vazirani learning algorithm and the current state-of-the-art adaptive algorithm.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.