Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptation in Online Social Learning (2003.01948v1)

Published 4 Mar 2020 in eess.SP and cs.MA

Abstract: This work studies social learning under non-stationary conditions. Although designed for online inference, classic social learning algorithms perform poorly under drifting conditions. To mitigate this drawback, we propose the Adaptive Social Learning (ASL) strategy. This strategy leverages an adaptive Bayesian update, where the adaptation degree can be modulated by tuning a suitable step-size parameter. The learning performance of the ASL algorithm is examined by means of a steady-state analysis. It is shown that, under the regime of small step-sizes: i) consistent learning is possible; ii) an accurate prediction of the performance can be furnished in terms of a Gaussian approximation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.