K-differentials with prescribed singularities (2208.11654v2)
Abstract: We study the local invariants that a meromorphic $k$-differential on a Riemann surface of genus $g \geq 0$ can have for $k \geq 3$. These local invariants include the orders of zeros and poles, as well as the $k$-residues at the poles. We show that for a given pattern of orders of zeros, there exists, with a few exceptions, a primitive holomorphic $k$-differential having zeros of these orders. In the meromorphic case, for genus $g \geq 1$, every expected tuple appears as a configuration of $k$-residues. On the other hand, for certain strata in genus zero, finitely many tuples (up to simultaneous scaling) do not occur as configurations of $k$-residues for a $k$-differential.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.