Counting differentials with fixed residues (2307.04221v1)
Abstract: We investigate the count of meromorphic differentials on the Riemann sphere possessing a single zero, multiple poles with prescribed orders, and fixed residues at each pole. Gendron and Tahar previously examined this problem with respect to general residues using flat geometry, while Sugiyama approached it from the perspective of fixed-point multipliers of polynomial maps in the case of simple poles. In our study, we employ intersection theory on compactified moduli spaces of differentials, enabling us to handle arbitrary residue conditions and provide a complete solution to this problem. We also determine interesting combinatorial properties of the solution formula.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.