Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exponential Concentration in Stochastic Approximation

Published 15 Aug 2022 in stat.ML, cs.LG, and math.OC | (2208.07243v4)

Abstract: We analyze the behavior of stochastic approximation algorithms where iterates, in expectation, progress towards an objective at each step. When progress is proportional to the step size of the algorithm, we prove exponential concentration bounds. These tail-bounds contrast asymptotic normality results, which are more frequently associated with stochastic approximation. The methods that we develop rely on a geometric ergodicity proof. This extends a result on Markov chains due to Hajek (1982) to the area of stochastic approximation algorithms. We apply our results to several different Stochastic Approximation algorithms, specifically Projected Stochastic Gradient Descent, Kiefer-Wolfowitz and Stochastic Frank-Wolfe algorithms. When applicable, our results prove faster $O(1/t)$ and linear convergence rates for Projected Stochastic Gradient Descent with a non-vanishing gradient.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.