Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball (2006.07867v2)

Published 14 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: We study stochastic gradient descent (SGD) and the stochastic heavy ball method (SHB, otherwise known as the momentum method) for the general stochastic approximation problem. For SGD, in the convex and smooth setting, we provide the first \emph{almost sure} asymptotic convergence \emph{rates} for a weighted average of the iterates . More precisely, we show that the convergence rate of the function values is arbitrarily close to $o(1/\sqrt{k})$, and is exactly $o(1/k)$ in the so-called overparametrized case. We show that these results still hold when using stochastic line search and stochastic Polyak stepsizes, thereby giving the first proof of convergence of these methods in the non-overparametrized regime. Using a substantially different analysis, we show that these rates hold for SHB as well, but at the last iterate. This distinction is important because it is the last iterate of SGD and SHB which is used in practice. We also show that the last iterate of SHB converges to a minimizer \emph{almost surely}. Additionally, we prove that the function values of the deterministic HB converge at a $o(1/k)$ rate, which is faster than the previously known $O(1/k)$. Finally, in the nonconvex setting, we prove similar rates on the lowest gradient norm along the trajectory of SGD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Othmane Sebbouh (7 papers)
  2. Robert M. Gower (41 papers)
  3. Aaron Defazio (34 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.