Dispersive hydrodynamics of soliton condensates for the Korteweg-de Vries equation (2208.04472v2)
Abstract: We consider large-scale dynamics of non-equilibrium dense soliton gas for the Korteweg-de Vries (KdV) equation in the special "condensate" limit. We prove that in this limit the integro-differential kinetic equation for the spectral density of states reduces to the $N$-phase KdV-Whitham modulation equations derived by Flaschka, Forest and McLaughlin (1980) and Lax and Levermore (1983). We consider Riemann problems for soliton condensates and construct explicit solutions of the kinetic equation describing generalized rarefaction and dispersive shock waves. We then present numerical results for "diluted" soliton condensates exhibiting rich incoherent behaviours associated with integrable turbulence.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.