Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-integrable soliton gas: The Schamel equation framework (2310.05705v1)

Published 9 Oct 2023 in physics.flu-dyn

Abstract: Soliton gas or soliton turbulence is a subject of intense studies due to its great importance to optics, hydrodynamics, electricity, chemistry, biology and plasma physics. Usually, this term is used for integrable models where solitons interact elastically. However, soliton turbulence can also be a part of non-integrable dynamics, where long-lasting solutions in the form of almost solitons may exist. In the present paper, the complex dynamics of ensembles of solitary waves is studied within the Schamel equation using direct numerical simulations. Some important statistical characteristics (distribution functions, moments) are calculated numerically for unipolar and bipolar soliton gases. Comparison of results with integrable Korteweg-de Vries (KdV) and modified KdV (mKdV) models are given qualitatively. Our results agree well with the predictions of the KdV equation in the case of unipolar solitons. However, in the bipolar case, we observed a notable departure from the mKdV model, particularly in the behavior of kurtosis. The observed increase in kurtosis signifies the amplification of distribution function tails, which, in turn, corresponds to the presence of high-amplitude waves.

Citations (7)

Summary

We haven't generated a summary for this paper yet.