Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Signature-based models: theory and calibration (2207.13136v1)

Published 26 Jul 2022 in q-fin.MF, math.PR, and q-fin.CP

Abstract: We consider asset price models whose dynamics are described by linear functions of the (time extended) signature of a primary underlying process, which can range from a (market-inferred) Brownian motion to a general multidimensional continuous semimartingale. The framework is universal in the sense that classical models can be approximated arbitrarily well and that the model's parameters can be learned from all sources of available data by simple methods. We provide conditions guaranteeing absence of arbitrage as well as tractable option pricing formulas for so-called sig-payoffs, exploiting the polynomial nature of generic primary processes. One of our main focus lies on calibration, where we consider both time-series and implied volatility surface data, generated from classical stochastic volatility models and also from S&P500 index market data. For both tasks the linearity of the model turns out to be the crucial tractability feature which allows to get fast and accurate calibrations results.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.