Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting AP Loss for Dense Object Detection: Adaptive Ranking Pair Selection (2207.12042v1)

Published 25 Jul 2022 in cs.CV

Abstract: Average precision (AP) loss has recently shown promising performance on the dense object detection task. However,a deep understanding of how AP loss affects the detector from a pairwise ranking perspective has not yet been developed.In this work, we revisit the average precision (AP)loss and reveal that the crucial element is that of selecting the ranking pairs between positive and negative samples.Based on this observation, we propose two strategies to improve the AP loss. The first of these is a novel Adaptive Pairwise Error (APE) loss that focusing on ranking pairs in both positive and negative samples. Moreover,we select more accurate ranking pairs by exploiting the normalized ranking scores and localization scores with a clustering algorithm. Experiments conducted on the MSCOCO dataset support our analysis and demonstrate the superiority of our proposed method compared with current classification and ranking loss. The code is available at https://github.com/Xudangliatiger/APE-Loss.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.