Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PackCache: An Online Cost-driven Data Caching Algorithm in the Cloud (2207.09035v2)

Published 19 Jul 2022 in cs.DS, cs.DC, and cs.NI

Abstract: In this paper, we study a data caching problem in the cloud environment, where multiple frequently co-utilised data items could be packed as a single item being transferred to serve a sequence of data requests dynamically with reduced cost. To this end, we propose an online algorithm with respect to a homogeneous cost model, called PackCache, that can leverage the FP-Tree technique to mine those frequently co-utilised data items for packing whereby the incoming requests could be cost-effectively served online by exploiting the concept of anticipatory caching. We show the algorithm is 2\alpha competitive, reaching the lower bound of the competitive ratio for any deterministic online algorithm on the studied caching problem, and also time and space efficient to serve the requests. Finally, we evaluate the performance of the algorithm via experimental studies to show its actual cost-effectiveness and scalability.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.