Strain compatibility and gradient elasticity in morphing origami metamaterials (2207.08752v1)
Abstract: The principles of origami design have proven useful in a number of technological applications. Origami tessellations in particular constitute a class of morphing metamaterials with unusual geometric and elastic properties. Although inextensible in principle, fine creases allow origami metamaterials to effectively deform non-isometrically. Determining the strains that are compatible with coarse-grained origami kinematics as well as the corresponding elasticity functionals is paramount to understanding and controlling the morphing paths of origami metamaterials. Here, within a unified theory, we solve this problem for a wide array of well-known origami tessellations including the Miura-ori as well as its more formidable oblique, non-developable and non-flat-foldable variants. We find that these patterns exhibit two universal properties. On one hand, they all admit equal but opposite in-plane and out-of-plane Poisson's ratios. On the other hand, their bending energy detaches from their in-plane strain and depends instead on the strain gradient. The results are illustrated over a case study of the self-equilibrium geometry of origami pillars.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.