Papers
Topics
Authors
Recent
Search
2000 character limit reached

A multi-level interpretable sleep stage scoring system by infusing experts' knowledge into a deep network architecture

Published 11 Jul 2022 in cs.LG | (2207.04585v1)

Abstract: In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is particularly problematic for high-risk applications such as medical-related decision-making. The current study goal was to design an interpretable deep learning system for time series classification of electroencephalogram (EEG) for sleep stage scoring as a step toward designing a transparent system. We have developed an interpretable deep neural network that includes a kernel-based layer based on a set of principles used for sleep scoring by human experts in the visual analysis of polysomnographic records. A kernel-based convolutional layer was defined and used as the first layer of the system and made available for user interpretation. The trained system and its results were interpreted in four levels from the microstructure of EEG signals, such as trained kernels and the effect of each kernel on the detected stages, to macrostructures, such as the transition between stages. The proposed system demonstrated greater performance than prior studies and the results of interpretation showed that the system learned information which was consistent with expert knowledge.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.